
I. Notes on Structured Programming 

EDSGER W. DIJKSTRA 

1. To MY READER 

These notes have the status of "Letters written to myself": I wrote them down 
because, without doing so, I found myself repeating the same arguments 
over and over again. When reading what I had written, I was not always too 
satisfied. 

For one thing, I felt that they suffered from a marked verbosity. Yet I do 
not try to condense them (now), firstly because that would introduce another 
delay and I would like to "think on", secondly because earlier experiences 
have made me afraid of being misunderstood: many a programmer tends to 
see his (sometimes rather specific) difficulties as the core of the subject and 
as a result there are widely divergent opinions as to what programming is 
really about. 

I hope that, despite its defects, you will enjoy at least parts of it. If these 
notes prove to be a source of inspiration or to give you a new appreciation 
of the programmer's trade, some of my goals will have been reached. 

Prior to their publication in book form, the "Notes on Structured Pro- 
gramming" have been distributed privately. The interest then shown in 
them, for which I would like to express my gratitude here, has been one of 
the main incentives to supplement them with some additional material and 
to make them available to a wider public. In particular I would like to thank 
Bob Floyd, Ralph London and Mike Woodger for their encouraging 
comments and Peter Naur for the criticism he expressed. Finally I would 
like to express my gratitude to Mrs. E. L. Dijkstra-Tucker for her kind 
assistance in my struggles with the English language. 

2. ON OUR INABILITY TO Do MUCH 

I am faced with a basic problem of presentation. What I am really concerned 
about is the composition of large programs, the text of which may be, say, 
of the same size as the whole text of this chapter. Also I have to include 
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examples to illustrate the various techniques. For practical reasons, the 
demonstration programs must be small, many times smaller than the "life- 
size programs" I have in mind. My basic problem is that precisely this 
difference in scale is one of the major sources of our difficulties in pro- 
grammingt 

It would be very nice if I could illustrate the various techniques with 
small demonstration programs and could conclude with " . . .  and when faced 
with a program a thousand times as large, you compose it in the same way." 
This common educational device, however, would be self-defeating as one of 
my central themes will be that any two things that differ in some respect by a 
factor of already a hundred or more, are utterly incomparable. 

History has shown that this truth is very hard to believe. Apparently we are 
too much trained to disregard differences in scale, to treat them as "gradual 
differences that are not essential". We tell ourselves that what we can do once, 
we can also do twice and by induction we fooI ourselves into believing that we 
can do it as many times as needed, but this is just not truer A factor of a 
thousand is already far beyond our powers of imagination t 

Let me give you two examples to rub this in. A one-year old child will 
crawl on all fours with a speed of, say, one mile per hour. But a speed of a 
thousand miles per hour is that of a supersonic jet. Considered as objects 
with moving ability the child and the jet are incomparable, for whatever one 
can do the other cannot and vice versa. Also: one can close one's eyes and 
imagine how it feels to be standing in an open place, a prairie or a sea shore, 
while far away a big, reinless horse is approaching at a gallop, one can "see" 
it approaching and passing. To do the same with a phalanx of a thousand of 
these big beasts is mentally impossible" your heart would miss a number of 
beats by pure panic, if you could! 

To complicate matters still further, problems of size do not only cause me 
problems of presentation, but they lie at the heart of the subject: widespread 
underestimation of the specific difficulties of size seems one of the major 
underlying causes of the current software failure. To all this I can see only 
one answer, viz. to treat problems of size as explicitly as possible. Hence the 
title of this section. 

To start with, we have the "size" of the computation, i.e. the amount of 
information and the number of operations involved in it. It is essential that 
this size is large, for if it were really small, it would be easier not to use the 
computer at all and to do it by hand. The automatic computer owes its right 
to exist, its usefulness, precisely to its ability to perform large computations 
where we humans cannot. We want the computer to do what we could never 
do ourselves and the power of present-day machinery is such that even small 
computations are by their very size already far beyond the powers of our 
unaided imagination. 
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Yet we must organise the computations in such a way that our limited 
powers are sufficient to guarantee that the computation will establish the 
desired effect. This organising includes the composition of the program and 
here we are faced with the next problem of size, viz. the length of the program 
text, and we should give this problem also explicit recognition. We should 
remain aware of the fact that the extent to which we can read or write a text 
is very much dependent on its size. In my country the entries in the telephone 
directory are grouped by town or village and within each such group the 
subscribers are listed by name in alphabetical order. I myself live in a small 
village and given a telephone number I have only to scan a few columns to 
find out to whom the telephone number belongs, but to do the same in a large 
city would be a major data processing task! 

It is in the same mood that I should like to draw the reader's attention to 
the fact that "clarity" has pronounced quantitative aspects, a fact many 
mathematicians, curiously enough, seem to be unaware of. A theorem stating 
the validity of a conclusion when ten pages full of conditions are satisfied is 
hardly a convenient tool, as all conditions have to be verified whenever the 
theorem is appealed to. In Euclidean geometry, Pythagoras' Theorem holds 
for any three points A, B and C such that through A and C a straight line 
can be drawn orthogonal to a straight line through B and C. How many 
mathematicians appreciate that the theorem remains applicable when some or 
all of the points A, B and C coincide? Yet this seems largely responsible for 
the convenience with which Pythagoras' Theorem can be used. 

Summarizing: as a slow-witted human being I have a very small head and I 
had better learn to live with it and to respect my limitations and give them full 
credit, rather than to try to ignore them, for the latter vain effort will be 
punished by failure. 

3. ON THE RELIABILITY OF MECHANISMS 

Being a programmer by trade, programs are what I am talking about and the 
true subject of this section really is the reliability of programs. That, never- 
theless, I have mentioned "mechanisms" in its title is because I regard 
programs as specific instances of mechanisms, and that I wanted to express, 
at least once, my strong feeling that many of my considerations concerning 
software are, mutatis mutandis, just as relevant for hardware design. 

Present-day computers are amazing pieces of equipment, but most amazing 
of all are the uncertain grounds on account of which we attach any validity to 
their output. It starts already with our belief that the hardware functions 
properly. 

Let us restrict, for a moment, our attention to the hardware and let us 
wonder to what extent one can convince oneself of its being properly con- 
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structed. Some years ago a machine was installed on the premises of my 
University; in its documentation it was stated that it contained, among many 
other things, circuitry for the fixed-point multiplication of two 27-bit integers. 
A legitimate question seems to be" "Is this multiplier correct, is it performing 
according to the specifications?". 

The naive answer to this is: "Well, the number of different multiplications 
this multiplier is claimed to perform correctly is finite, viz. 25., so let us 
try them all." But, reasonable as this answer may seem, it is not, for although 
a single multiplication took only some tens of microseconds, the total time 
needed for this finite set of multiplications would add up to more than 10,000 
years! We must conclude that exhaustive testing, even of a single component 
such as a multiplier, is entirely out of the question. (Testing a complete 
computer on the same basis would imply the established correct processing 
of all possible programs !) 

A first consequence of the 10,000 years is that during its life-time the 
multiplier will be asked to perform only a negligible fraction of the vast 
number of all possible multiplications it could do: practically none of them! 
Funnily enough, we still require that it should do any multiplication correctly 
when ordered to do so. The reason underlying this fantastic quality require- 
ment is that we do not know in advance, which are the negligibly few 
multiplications it will be asked to perform. In our reasoning about our 
programs we talk about "the product" and have abstracted from the specific 
values of the factors: we do not know them, we do not wish to know them, 
it is not our business to know them, it is our business not to know them! 
Our wish to think in terms of the concept "the product", abstracted from the 
specific instances occurring in a computation is granted, but the price paid 
for this is precisely the reliability requirement that any multiplication of the 
vast set will be performed correctly. So much for the justification of our 
desire for a correct multiplier. 

But how is the correctness established in a convincing manner? As long as 
the multiplier is considered as a black box, the only thing we can do is "testing 
by sampling", i.e. offering to the multiplier a feasible amount of factor pairs 
and checking the result. But in view of the 10,000 years, it is clear that we can 
only test a negligible fraction of the possible multiplications. Whole classes 
of in some sense "critical" multiplications may remain untested and in view 
of the reliabillty justly desired, our quality control is still most unsatisfactory. 
Therefore it is not done that way. 

The straightforward conclusion is the following: a convincing demon- 
stration of correctness being impossible as long as the mechanism is regarded 
as a black box, our only hope lies in not regarding the mechanism as a black 
box. I shall call this "taking the structure of the mechanism into account". 
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From now onwards the type of mechanisms we are going to deal with are 
programs. (In many respects, programs are mechanisms much easier to deal 
with than circuitry, which is really an analogue device and subject to wear and 
tear.) And also with programs it is fairly hopeless to establish the correctness 
beyond even the mildest doubt by testing, without taking their structure into 
account. In other words, we remark that the extent to which the program 
correctness can be established is not purely a function of the program's 
external specifications and behaviour but depends critically upon its internal 
structure. 

Recalling that our true concern is with really large programs, we observe as 
an aside that the size itself requires a high confidence level for the individual 
program components. If the chance of correctness of an individual component 
equals p, the chance of correctness of a whole program, composed of N such 
components, is something like 

p=pN. 

As N will be very large, p should be very, very close to 1 if we desire P to 
differ significantly from zero! 

When we now take the position that it is not only the programmer's task to 
produce a correct program but also to demonstrate its correctness in a con- 
vincing manner, then the above remarks have a profound influence on the 
programmer's activity: the object he has to produce must be usefully 
structured. 

The remaining part of this monograph will mainly be an exploration of 
what program structure can be used to good advantage. In what follows it 
will become apparent that program correctness is not my only concern, 
program adaptability or manageability will be another. This stress on program 
manageability is my deliberate choice, a choice that, therefore, I should like 
to justify. 

While in the past the growth in power of the generally available equipment 
has mitigatedthe urgency of the efficiency requirements, this very same growth 
has created its new difficulties. Once one has a powerful machine at one's 
disposal one tries to use it and the size of the problems one tackles adjusts 
itself to the scope of the equipment: no one thinks about programming an 
algorithm that would take twenty years to execute. With processing power 
increased by a factor of a thousand over the last ten to fifteen years, Man has 
become considerably more ambitious in selecting problems that now should 
be "technically feasible". Size, complexity and sophistication of programs 
one should like to make have exploded and over the past years it has become 
patently clear that on the whole our programming ability has not kept pace 
with these exploding demands made on it. 
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The power of available equipment will continue to grow" we can expect 
manufacturers to develop still faster machines and even without that develop- 
ment we shall witness that the type of machine that is presently considered as 
exceptionally fast will become more and more common. The things we should 
like to do with these machines will grow in proportion and it is on this 
extrapolation that I have formed my picture of the programmer's task. 

My conclusion is that it is becoming most urgent to stop to consider 
programming primarily as the minimization of a cost/performance ratio. We 
should recognise that already now programming is much more an intellectual 
challenge: the art of programming is the art of organising complexity, of 
mastering multitude and avoiding its bastard chaos as effectively as possible. 

My refusal to regard efficiency considerations as the programmer's prime 
concern is not meant to imply that I disregard them. On the contrary, 
efficiency considerations are recognised as one of the main incentives to 
modifying a logically correct program. My point, however, is that we can 
only afford to optimise (whatever that may be) provided that the program 
remains sufficiently manageable. 

Let me end this section with a final aside on the significance of computers. 
Computers are extremely flexible and powerful tools and many feel that their 
application is changing the face of the earth. I would venture the opinion that 
as long as we regard them primarily as tools, we might grossly underestimate 
their significance. Their influence as tools might turn out to be but a ripple 
on the surface of our culture, whereas I expect them to have a much more 
profound influence in their capacity of intellectual challenge! 

Corollary of the first part of this section: 
Program testing can be used to show the presence of bugs, but never to 

show their absence! 

4. ON OUR MENTAL AIDS 

In the previous section we have stated that the programmer's duty is to make 
his product "usefully structured" and we mentioned the program structure in 
connection with a convincing demonstration of the correctness of the 
program. 

But how do we convince? And how do we convince ourselves? What are 
the typical patterns of thought enabling ourselves to understand? It is to a 
broad survey of such questions that the current section is devoted. It is written 
with my sincerest apologies to the professional psychologist, because it will 
be amateurishly superficial. Yet I hope (and trust) that it will be sufficient to 
give us a yardstick by which to measure the usefulness of a proposed 
structuring. 



NOTES ON STRUCTURED PROGRAMMING 7 

Among the mental aids available to understand a program (or a proof of its 
correctness) there are three that I should like to mention explicitly: 

(1) Enumeration 

(2) Mathematical induction 

(3) Abstraction. 

4.1. ON ENUMERATION 

I regard as an appeal to enumeration the effort to verify a property of the 
computations that can be evoked by an enumerated set of statements per- 
formed in sequence, including conditional clauses distinguishing between two 
or more cases. Let me give a simple example of what I call "enumerative 
reasoning". 

It is asked to establish that the successive execution of the following two 
statements 

"dd: = dd/2; 

ifdd~< r d o  r : = r - d d "  

operating on the variables " r "  and "dd"  leaves the relations 

0 ~< r < dd (1) 

invariant. One just "follows" the little piece of program assuming that (1) is 
satisfied to start with. After the execution of the first statement, which halves 
the value of dd, but leaves r unchanged, the relations 

0 ~< r < 2*dd (2) 

will hold. Now we distinguish two mutually exclusive cases. 

(1) dd ~< r. Together with (2) this leads to the relations 

dd ~< r < 2*dd; (3) 

In this case the statement following do wilt be executed, ordering a decrease 
of r by dd, so that from (3) it follows that eventually 

O~<r < d d ,  

i.e. (1) will be satisfied. 

(2) non dd ~< r (i.e. d d >  r). In this case the statement following do will be 
skipped and therefore also r has its final value. In this case " d d >  r"  together 
with (2), which is valid after the execution of the first statement leads 
immediately to 

O ~< r < dd 

so that also in the second case (1) will be satisfied. 

Thus we have completed our proof of the invariance of relations (1), we 
have also completed our example of enumerative reasoning, conditional 
clauses included. 
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4.2. ON MATHEMATICAL INDUCTION 

I have mentioned mathematical induction explicitly because it is the only 
pattern of reasoning that I am aware of that eventually enables us to cope 
with loops (such as can be expressed by repetition clauses) and recursive 
procedures. I should like to give an example. 

Let us consider the sequence of values 

do, dl, d2, d 3 ,  . . . . .  (1) 
given by 

f o r i =  0 d i = D (2a) 

for i > 0 d~ = f (d~_ 1) (2b) 

where D is a given value and f a given (computable) function. It is asked to 
make the value of the variable "d"  equal to the first value dk in the sequence 
that satisfies a given (computable) condition "prop '. It is given that such a 
value exists for finite k. A more formal definition of the requirement is to 
establish the relation 

d = dk (3) 

where k is given by the (truth of the) expressions 

prop (dk) (4) 

and non prop (d3 for all i satisfying 0 ~< i < k (5). 

We now consider the following program part: 

"d: = D; 

while non prop (d) do d: = f ( d ) "  (6) 

in which the first line represents the initialisation and the second one the loop, 
controlled by the (hopefully self-explanatory) repetition clause while. . .do. 
(In terms of the conditional clause i f . . .  do, used in our previous example, a 
more formal definition of the semantics of the repetition clause is by stating 
that 

"while B do S" 

is semantically equivalent with 

"if B do 

begin S; while B do S end" 

expressing that "non B" is the necessary and sufficient condition for the 
repetition to terminate.) 

Calling in the construction "while B do S" the statement S "the repeated 
statement" we shall prove that in program (6): 

after the nth execution of the repeated statement will hold (for n >~ 0) 

d = d~ (7a) 
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and n o n  prop (di) for all i satisfying 0 ~< i < n. (7b) 

The above statement holds for n = 0 (by enumerative reasoning); we have 
to prove (by enumerative reasoning) that when it holds for n = N ( N  ~ 0), 
it will also hold for n = N + 1. 

After the Nth execution of the repeated statement relations (7a) and (7b) 
are satisfied for n = N. For the N + 1 st execution to take place, the necessary 
and sufficient condition is the truth of 

n o n  prop (d) 

which, thanks to (7a) for n = N (i.e. d = dN) means 

n o n  prop (dN) 

leading to condition (7b) being satisfied for n = N + 1. Furthermore, 
d = dN and (2b) leads to 

f ( d )  = dN+ 1 

so that the net effect of the N + 1st execution of the repeated statement 

"d: = f ( d ) "  

established the relation 

d =  dN+l 

i.e. relation (7a) for N = N + 1 and thus the induction step (7) has been 
proved. 

Now we shall show that the repetition terminates after the kth execution 
of the repeated statement. The nth execution cannot take place for n > k 
for (on account of 7b) this would imply 

n o n  prop (dk) 

thereby violating (4). When the repetition terminates after the nth execution 
of the repeated statement, the necessary and sufficient condition for termina- 
tion, viz. 

non (non prop (d)) 

becomes, thanks to (7a) 

prop (dn). (8) 

This excludes termination for n < k, as this would violate (5). As a result the 
repetition will terminate with n = k, so that (3) follows from (7a), (4) follows 
from (8) and (5) follows from (Tb). Which terminates our proof. 

Before turning our attention away from this example illustrating the use of 
mathematical induction as a pattern of reasoning, I should like to add some 
remarks, because I have the uneasy feeling that by now some of my readers 
(in particular experienced and competent programmers) will be terribly 
irritated, viz. those readers for whom program (6) is so obviously correct 
that they wonder what all the fuss is about:  "Why his pompous restatement 
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of the problem, as in (3), (4) and (5), because anyone knows what is meant 
by the first value in the sequence, satisfying a condition? Certainly he does 
not expect us, who have work to do, to supply such lengthy proofs, with all 
the mathematical dressing, whenever we use such a simple loop as that?" 
Etc. 

To tell the honest truth: the pomp and length of the above proof infuriate 
me as well! But at present I cannot do much better if I really try to prove the 
correctness of this program. But it sometimes fills me with the same kind of 
anger as years ago the crazy proofs of the first simple theorems in plane 
geometry did, proving things of the same degree of "obviousness" as Euclid's 
axioms themselves. 

Of course I would not dare to suggest (at least at present!) that it is the 
programmer's duty to supply such a proof whenever he writes a simple loop 
in his program. If so, he could never write a program of any size at all! It 
would be as impractical as reducing each proof in plane geometry explicitly 
and in extenso to Euclid's axioms. (Cf. Section "On our inability to do 
much.") 

My moral is threefold. Firstly, when a programmer considers a construc- 
tion like (6) as obviously correct, he can do so because he is familiar with the 
construction. I prefer to regard his behaviour as an unconscious appeal to a 
theorem he knows, although perhaps he has never bothered to formulate it; 
and once in his life he has convinced himself of its truth, although he has 
probably forgotten in which way he did it and although the way was 
(probably) unfit for print. But we could call our assertions about program 
(6), say, "The Linear Search Theorem" and knowing such a name it is much 
easier (and more natural) to appeal to it consciously. 

Secondly, to the best of my knowledge, there is no set of theorems of the 
type illustrated above, whose usefulness has been generally accepted. But we 
should not be amazed about that, for the absence of such a set of theorems is a 
direct consequence of the fact that the type of object~i.e, p rograms~has  not 
settled down. The kind of object the programmer is dealing with, viz. 
programs, is much less well-established than the kind of object that is dealt 
with in plane geometry. In the meantime the intuitively competent programmer 
is probably the one who confines himself, whenever acceptable, to program 
structures with which he is very familiar, while becoming very alert and 
careful whenever he constructs something unusual (for him). For an estab- 
lished style of programming, however, it might be a useful activity to look 
for a body of theorems pertinent to such programs. 

Thirdly, the length of the proof we needed in our last example is a warning 
that should not be ignored. There is of course the possibility that a better 
mathematician will do a much shorter and more elegant job than I have done. 
Personally I am inclined to conclude from this length that programming is 
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more difficult than is commonly assumed: let us be honestly humble and 
interpret the length of the proof as an urgent advice to restrict ourselves to 
simple structures whenever possible and to avoid in all intellectual modesty 
"clever constructions" like the plague. 

4.3. ON ABSTRACTION 

At this stage I find it hard to be very explicit about the role of abstraction, 
partly because it permeates the whole subject. Consider an algorithm and all 
possible computations it can evoke: starting from the computations the 
algorithm is what remains when one abstracts from the specific values 
manipulated this time. The concept of "a variable" represents an abstraction 
from its current value. It has been remarked to me (to my great regret. I 
cannot remember by whom and so I am unable to give credit where it seems 
due) that once a person has understood the way in which variables are used in 
programming, he has understood the quintessence of programming. We can 
find a confirmation for this remark when we return to our use of mathematical 
induction with regard to the repetition: on the one hand it is by abstraction 
that the concepts are introduced in terms of which the induction step can be 
formulated; on the other hand it is the repetition that really calls for the 
concept of "a variable". (Without repetition one can restrict oneself to 
"quantities" the value of which has to be defined as most once but never has 
to be redefined as in the case of a variable.) 

There is also an abstraction involved in naming an operation and using it 
on account of "what it does" while completely disregarding "how it works". 
(In the same way one should state that a programming manual describes an 
abstract machine" the specific piece of hardware delivered by the manu- 
facturer is nothing but a--usually imperfect !--mechanical model of this 
abstract machine.) There is a strong analogy between using a named operation 
in a program regardless of "how it works" and using a theorem regardless 
of how it has been proved. Even if its proof is highly intricate, it may be a 
very convenient theorem to use! 

Here, again, I refer to our inability to do much. Enumerative reasoning is 
all right as far as it goes, but as we are rather slow-witted it does not go very 
far. Enumerative reasoning is only an adequate mental tool under the severe 
boundary condition that we use it only very moderately. We should appreciate 
abstraction as our main mental technique to reduce the demands made upon 
enumerative reasoning. 

(Here Mike Woodger, National Physical Laboratory, Teddington, England, 
made the following remark, which I insert in gratitude: "There is a parallel 
analogy between the unanalysed terms in which an axiom or theorem is 
expressed and the unanalysed operands upon which a named operation is 
expected to act.") 
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5. AN EXAMPLE OF A CORRECTNESS PROOF 

Let us consider the following program section, where the integer constants 
a and d satisfy the relations 

a ~> 0 a n d d >  0. 

"integer r,  dd; 

r ' =  a; dd: = d; 

while dd ~< r do d d  : = 2 * d d  ; 

while dd -~ d do 
begin dd: = dd/2; 

i f d d ~ < r d o r : =  r -  dd 

end". 
To apply the Linear Search Theorem (see Section "On our mental aids", 

subsection "On mathematical induction") we consider the sequence of values 
given by 

f o r i =  0 d d ~ = d  

for i > 0 ddi = 2*ddi_ 1 

from which ddn = d*2" (1) 

can be derived by normal mathematical techniques, which also tell us that 
(because d > 0) for finite r 

ddk > r 

will hold for some finite k, thus ensuring that the first repetition terminates 
with 

dd = d*2 k 

Solving the relation 

d~ = 2*d i -  1 

for d~_ 1 gives 

d i -  1 = dd2 

and the Linear Search Theorem then tells us, that the second repetition will 
also terminate. (As a matter of fact the second repeated statement will be 
executed exactly the same number of times as the first one.) 

At the termination of the first repetition, 

d d =  ddk 

and therefore, 

0 ~< r < d d  (2) 

holds. As shown earlier (Section "On our mental aids.", subsection "On 
enumeration") the repeated statement of the second clause leaves this relation 
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invariant. After termination (on account of "while d d - ¢  d do") we can 
conclude 

dd = d 

which together with (2) gives 

0 ~< r < d (3) 

Furthermore we prove that after the initialisation 

dd _= 0 mod (d) (4) 

holds; this follows, for instance, from the fact that the possible values of dd 

are (see (1)) 
d*2 i for O ~< i ~ . k .  

Our next step is to verify, that after the initial assignment to r the relation 

a ~ r mod (d) (5) 
holds. 

(1) It holds after the initial assignments. 

(2) The repeated statement of the first clause ("dd: = 2*rid") maintains 
the invariance of (5) and therefore the whole first repetition maintains the 
validity of (5). 

(3) The second repeated statement consists of two statements. The first 
("rid: = dd/2")  leaves (5) invariant, the second one also leaves (5) invariant for 
either it leaves r untouched or it decreases r by the current value of dd, an 
operation which on account of (4) also maintains the validity of (5). Therefore 
the whole second repeated statement leaves (5) invariant and therefore the 
whole repetition leaves (5) invariant. Combining (3) and (5), the final value 
therefore satisfies 

0 ~< r <  d a n d a = _  r m o d ( d )  

i.e. r is the smallest non-negative remainder of the division of a by d. 

R e m a r k  1. The program 

"integer r, dd, q; 

r: = a; dd: = d; q: = 0; 

while dd <~ r do dd:  = 2 * dd; 

while d d  # d do 
begin dd: = dd/2; q: = 2 * q; 

i fdd~<rdobeg inr :=  r -  dd;  q : = q + l e n d  
end 

assigns to q the value of the corresponding quotient. The proof can be 
established by observing the invariance of the relation 

a = q * d d + r .  

(I owe this example to my colleague N. G. de Bruijn.) 
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Remark 2. In the subsection "On mathematical induction." we have proved 
the Linear Search Theorem. In the previous proof we have used another 
theorem about repetitions (a theorem that, obviously, can only be proved by 
mathematical induction, but the proof is so simple that we leave it as an 
exercise to the reader), viz. that if prior to entry of a repetition a certain 
relation P holds, whose truth is not destroyed by a single execution of the 
repeated statement, then relation P will still hold after termination of the 
repetition. This is a very useful theorem, often allowing us to bypass an 
explicit appeal to mathematical induction. (We can state the theorem a little 
more sharply; in the repetition 

"while B do S" 

one has to show that S is such that the truth of 

P and B 
prior to the execution of S implies the truth of 

P 

after its execution.) 

Remark 3. As an exercise for the reader (for which acknowledgement is 
due to James King, CMU, Pittsburgh, USA), prove that with integer A, B, 
x, y and z and 

A > 0 and B >t 0 

after the execution of the program section 

" x : =  A ; y : =  B ; z : = l ;  

while y -¢ 0 do 

begin if odd (y) do begin y: = y - 1; z: = z * x end; 

y : =  y/2; x : =  x *  x 

end" 

finally z = A s will hold. 

The proof has to show that (in spite of "y: = y/2") all variables keep 
integer values; the method shows the invariance of 

x >  0 a n d y t >  0andAB = z * x  y 

6. ON THE VALIDITY OF PROOFS VERSUS THE VALIDITY OF 
IMPLEMENTATIONS 

In the previous section I have assumed "perfect arithmetic" and in my 
experience the validity of such proofs often gets questioned by people who 
argue that in practice one never h~is perfect arithmetic at ones disposal: 
admissible integer values usually have an absolute upper bound, real numbers 
are only represented to a finite accuracy etc. So what is the validity of such 
proofs? 
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The answer to this question seems to be the following. If one proves the 
correctness of a program assuming an idealised, perfect world, one should 
not be amazed if something goes wrong when this ideal program gets executed 
by an "imperfect" implementation. Obviously!Therefore, if we wish to prove 
program correctness in a more realistic world, the thing to do is to acknow- 
ledge right at the start that all operations appealed to in the program (in 
particular all arithmetic operations) need not be perfect, provided we state-- 
rather axiomatically--the properties they have to satisfy for the proper 
execution of the program, i.e. the properties on which the correctness proof 
relies. (In the example of the previous section this requirement is simply 
exact integer arithmetic in the range [0, 2a].) 

When writing a program operating on real numbers with rounded opera- 
tions, one must be aware of the assumptions one makes, such as 

b > 0 i m p l i e s a + b f > a  

a * b = b * a  

- ( a ' b )  = ( - a )  * b 

0 * x = 0  

0 + x = x  

l ' x =  xetc.  etc. 

Very often the validity of such relations is essential to the logic of the 
program. For the sake of compatibility, the programmer would be wise to be 
as undemanding as possible, whereas a good implementation should satisfy 
as many reasonable requirements as possible. 

This is the place to confess one of my blunders. In implementing ALGOL 60 
we decided that "x = y" would deliver the value true not only in the case of 
exact equality, but also when the two values differed only in the least signifi- 
cant digit represented, because otherwise it was so very improbable that the 
value true would ever be computed. We were thinking of converging iterations 
that could oscillate within rounding accuracy. While we had been generous 
(with the best of intentions!) in regarding real numbers as equal, it quickly 
turned out that the chosen operation was so weak as to be hardly of any use 
at all. What it boiled down to was that the established truth of a = b and 
b = c did not allow the programmer to conclude the truth of a = c. The 
decision was quickly changed. It is because of that experience that I know 
that the programmer can only use his tool by virtue of (a number of) its 
properties; conversely, the programmer must be able to state which properties 
he requires. (Usually programmers don't do so because, for lack of tradition 
as to what properties can be taken for granted, this would require more 
explicitness than is otherwise desirable. The proliferation of machines with 
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lousy floating-point hardware~together  with the misapprehension that the 
automatic computer is primarily the tool of the numerical analyst~has  done 
much harm to the profession!) 

7. ON UNDERSTANDING PROGRAMS 

In my life I have seen many programming courses that were essentially like 
the usual kind of driving lessons, in which one is taught how to handle a car 
instead of how to use a car to reach one's destination. 

My point is that a program is never a goal in itself; the purpose of a 
program is to evoke computations and the purpose of the computations is to 
establish a desired effect. Although the program is the final product made by 
the programmer, the possible computations evoked by i t~ the  "making" of 
which is left to the machine!~are  the true subject matter of his trade. For 
instance, whenever a programmer states that his program is correct, he really 
makes an assertion about the computations it may evoke. 

The fact that the last stage of the total activity, viz. the transition from 
the (static) program text to the (dynamic) computation, is essentially left to 
the machine is an added complication. In a sense the making of a program is 
therefore more difficult than the making of a mathematical theory: both 
program and theory are structured, timeless objects. But while the mathe- 
matical theory makes sense as it stands, the program only makes sense via its 
execution. 

In the remaining part of this section I shall restrict myself to programs 
written for a sequential machine, and I shall explore some of the consequences 
of our duty to use our understanding of a program to make assertions about 
the ensuing computations. It is my (unproven) claim that the ease and 
reliability with which we can do this depends critically upon the simplicity of 
the relation between the two, in particular upon the nature of sequencing 
control. In vague terms we may state the desirability that the structure of 
the program text reflects the structure of the computation. Or, in other terms, 
"What  can we do to shorten the conceptual gap between the static program 
text (spread out in "text space") and the corresponding computations 
(evolving in time) ?" 

It is the purpose of the computation to establish a certain desired effect. 
When it starts at a discrete moment to it will be completed at a later discrete 
moment ta and we assume that its effect can be described by comparing "the 
state at to" with "the state at t~". If no intermediate states are taken into 
consideration the effect is regarded as being established by a primitive action. 

When we do take a number of intermediate states into consideration this 
means that we have parsed the happening in time. We regard it as a sequential 
computation, i.e. the time-succession of a number of subactions and we have 
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to convince ourselves that the cumulative effect of this time-successiQn of 
subactions indeed equals the desired net effect of the total computation. 

The simplest case is a parsing, a decomposition, into a fixed number of 
subactions that can be enumerated. In flowchart form this can be represented 
as follows. 
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The validity of this decomposition has to be established by enumerative 
reasoning. In this case, shortening of the conceptual gap between program 
and computation can be achieved by requiring that a linear piece of program 
text contains names or descriptions of the subactions in the order in which 
they have to take place. In our earlier example (invariance of 0 ~< r < dd) 

"dd: = dd/2; 

i f  dd ~ r do  r: = r - dd"  

this condition is satisfied. The primary decomposition of the computation is 
into a time-succession of two actions; in the program text we recognise this 
structure 

"halve dd; 

reduce r modulo dd".  

We are considering all initial states satisfying 0 ~< r < dd and in all 
computations then considered, the given parsing into two subactions is 
applicable. So far, so good. 

The program, however, is written under the assumption that "reduce r 
modulo dd"  is not a primitive action, while "decrease r by dd"  is. Viewing all 
possible happenings during "reduce r modulo dd"  it then becomes relevant 
to distinguish that in some cases "decrease r by dd"  takes place, while in the 
other cases r remains unchanged. By writing 

"if dd ~< r do decrease r by dd"  
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we have represented that at the given level of detail the action "reduce r 
modulo rid" can take one of two mutually exclusive forms and we have also 
given the criterion on account of which the choice between them is made. If 
we regard "if dd ~ r do" as a conditional clause attached to "decrease r by 
rid" it is natural that the conditional clause is placed in front of the conditioned 
statement. (In this sense the alternative clause 

"if condition then statement 1 else statement 2" 

is "over-ordered" with respect to "statement 1" and "statement 2": they are 
just two alternatives that cannot be expressed simultaneously on a linear 
medium.) 

The alternative clause has been generalised by C. A. R. Hoare whose 
"case-of" construction provides a choice between more than two possibilities. 
In flowchart form they can be represented as follows. 
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These flowcharts share the property that they have a single entry at the top 
and a single exit at the bottom: as indicated by the dotted block they can 
again be interpreted (by disregarding what is inside the dotted lines) as a 
single action in a sequential computation. To be a little bit more precise" 
we are dealing with a great number of possible computations, primarily 
decomposed into the same time-succession of subactions and it is only on 
closer inspection--i.e, by looking inside the dotted block--that it is revealed 
that over the collection of possible computations such a subaction may take 
one of an enumerated set of distinguished forms. 

The above is sufficient to consider a class of computations that are primarily 
decomposed into the same set of enumerated subactions; they are insufficient 
to consider a class of computations that are primarily decomposed into a 
varying number of subactions (i.e. varying over the class of computations 
considered). It is here that the usefulness of the repetition clauses becomes 
apparent. We mention "while condition do statement" and "repeat statement 
until condition" that may be represented in flowchart form as follows. 
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These flowcharts also share the property of a single entry at the top and a 
single exit at the bottom. They enable us to express that the action represented 
by the dotted block is on closer inspection a time-succession of "a sufficient 
number" of subactions of a certain type. 

We have now seen three types of decomposition; we could call them 
"concatenation", "selection" and "repetition" respectively. The first two are 
understood by enumerative reasoning, the last one by mathematical induction. 

The programs that can be written using the selection clauses and the 
repetition clauses as only the means for sequencing control, permit straight- 
forward translation into a programming language that is identical but for the 
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fact that sequencing control has to be expressed by jumps to labelled points. 
The converse is not true. Alternatively: restricting ourselves to the three 
mentioned types of decomposition leads to flowcharts of a restricted topology 
compared with the flowcharts one can make when arrows can be drawn from 
any block leading into any other. Compared with that greater freedom, to 
restrict oneself to the clauses presents itself as a sequencing discipline. 

Why do I propose to adhere to this sequencing discipline ? The justification 
for this decision can be presented in many ways and let me try a number of 
them in the hope that at least one of them will appeal to my readers. 

Eventually, one of our aims is to make such well-structured programs that 
the intellectual effort (measured in some loose sense) needed to understand 
them is proportional to program length (measured in some equally loose 
sense). In particular we have to guard against an exploding appeal to enumera- 
tive reasoning, a task that forces upon us some application of the old adage 
"Divide and Rule", and that is the reason why we propose the step-wise 
decompositions of the computations. 

We can understand a decomposition by concatenation via enumerative 
reasoning. (We can do so, provided that the number of subactions into which 
the computation is primarily parsed, is sufficiently small and that the specifi- 
cation of their net effect is sufficiently concise. I shall return to these require- 
ments at a later stage, at present we assume the conditions met.) It is then 
feasible to make assertions about the computations on account of the program 
text, thanks to the triviality of the relation between the progress through the 
computations and the progress through the program text. In particular: if on 
closer inspection one of the subactions transpires to be controlled by a 
selective clause or a repetition clause, this fact does not impose any burden 
on the understandability of the primary decomposition, because there only 
the subaction's net effect plays a role. 

As a corollary" if on closer inspection a subaction is controlled by a 
selective clause the specific path taken is always irrelevant at the primary level 
(the only thing that matters is that the correct path has been taken). And also: 
if on closer inspection a subaction is controlled by a repetitive clause, the 
number of times the repeated statement has been executed is, as such, 
irrelevant (the only thing that matters is that it has been repeated the correct 
number of times). 

We can also understand the selective clauses as such, viz. by enumerative 
reasoning; we can also understand the repetition clause, viz. by mathematical 
induction. For all three types of decomposition--and this seems to me a great 
help--we know the appropriate pattern of reasoning. 

There is a further benefit to be derived from the proposed sequencing 
discipline. In understanding programs we establish relations. In our example 
on enumerative reasoning we established that the program part 
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"dd: = dd/2; 

if  dd <~ r do r : =  r - d d "  

21 

O < . r < d d  

invariant. Yet, even if we can ensure that these relations hold before execution 
of the quoted program part, we cannot conclude that they always hold, viz. 
not necessarily between the execution of the two quoted statements. In other 
words: the validity of such relations is dependent on the progress of the 
computation, and this seems typical for a sequential process. 

Similarly, we attach meanings to variables: a variable may count the 
number of times an event of a given type has occurred, say the number bf 
lines that has been printed on the current page. Transition to the next page 
will be followed immediately by a reset to zero, printing a line will be followed 
immediately by an increase by 1. Again, just before resetting or increasing 
this count, the interpretation "number of lines printed on the current page" 
is non-valid. To assign such a meaning to a variable, again, can only be done 
relative to the progress of the computation. This observation raises the follow- 
ing question: "How do we characterise the progress of a computation?" 

In short, we are looking for a co-ordinate system in terms of which the 
discrete points of computation progress can be identified, and we want this 
co-ordinate system to be independent of the variables operated upon under 
program control: if we need values of such variables to describe progress of 
the computation we are begging the question, for it is precisely in relation to 
this progress that we want to interpret the meaning of these variables. 

(A still more stringent reason not to rely upon the values of variables is 
presented by a program containing a non-ending loop, cycling through a finite 
number of different states. Eternal cycling follows from the fact that a 
different points of progress the same state prevails. But then the state is 
clearly incapable of distinguishing between these two different points of 
progress!) 

We can state our problem in another way. Given a program in action and 
suppose that before completion of the computation the latter is stopped at 
one of the discrete points of progress. How can we identify the point of 
interruption, for instance if we want to redo the computation up to the very 
same point ? Or also • if stopping was due to some kind of dynamic error, how 
can we identify the point of progress short of a complete memory dump ? 

For the sake of simplicity we assume our program text spread out in 
(linear) text space and assume an identifying mechanism for the program 
points corresponding to the discrete points of computation progress; let us 
call this identifying mechanism "the textual index". (If the discrete points of 
computation progress are situated in between successive statement executions, 
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the textual index identifies, say, semicolons.) The textual index is a kind of 
generalised order counter, its value points to a place in the text. 

If we restrict ourselves to decomposition by concatenation and selection, a 
single textual index is sufficient to identify the progress of the computation. 
With the inclusion of repetition clauses textual indices are no longer sufficient 
to describe the progress of the computation. With each entry into a repetition 
clause, however, the system could introduce a so-called "dynamic index", 
inexorably counting the ordinal number of the corresponding current repeti- 
tion; at termination of the repetition the system should again remove the 
corresponding dynamic index. As repetition clauses may occur nested inside 
each other, the appropria te  mechanism is a stack (i.e. a last-in-first-out- 
memory). Initially the stack is empty; at entry of a repetition clause a new 
dynamic index( set to zero or one) is added on the top of the stack; whenever 
it is decided that the repetition is not terminated the top element of this stack 
is increased by 1; whenever it is decided that a repetition is terminated, the 
top element of the stack is removed. (This arrangement reflects very clearly 
that after termination of a repetition the number of times, even the fact that 
it was a repetition, is no longer relevant.) 

As soon as the programming language admits procedures, then a single 
textual index is no longer sufficient. In the case that a textual index points 
to the interior of a procedure body, the dynamic progress of the computation 
is only characterised when we also describe to which call of the procedure we 
refer, but this can be done by giving the textual index pointing to the place 
of the call. With the inclusion of the procedure the textual index must be 
generalised to a stack of textual indices, increased by one element at procedure 
call and decreased by one element at procedure return. 

The main point is that the values of these indices are outside the pro- 
grammer's control; they are defined (either by the write-up of his program or 
by the dynamic evolution of the current computation) whether he likes it or 
not. They provide independent co-ordinates in which to describe the progress 
of the computation, a "variable-independent" frame of reference in which 
meanings to variables can be assigned. 

There is, of course, even with the free use of jumps, a programmer inde- 
pendent co-ordinate system in terms of which the progress of a sequential 
computation can be described uniquely, viz. a kind of normalised clock that 
counts the number of "discrete points of computation progress" passed since 
program start. It is unique, but utterly unhelpful, because the textual index 
is no longer a constituent component of such a co-ordinate system. 

The moral of the story is that when we acknowledge our duty to control the 
computations (intellectually!) via the program text evoking them, that then 
we should restrict ourselves in all humility to the most systematic sequencing 
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mechanisms, ensuring that "progress through the computation" is mapped 
on "progress through the text" in the most straightforward manner. 

8. ON COMPARING PROGRAMS 

It is a programmer's everyday experience that for a given problem to be 
solved by a given algorithm, the program for a given machine is far from 
uniquely determined. In the course of the design process he has to select 
between alternatives; once he has a correct program, he will often be called to 
modify it, for instance because it is felt that an alternative program would be 
more attractive as far as the demands that the computations make upon the 
available equipment resources are concerned. 

These circumstances have raised the question of the equivalence of 
programs: given two programs, do they evoke computations establishing the 
same net effect ? After suitable formalisation (of the way in which the programs 
are given, of the machine that performs the computations evoked by them 
and of the "net effect" of the computations) this can presumably be made 
into a well-posed problem appealing to certain mathematical minds. But I 
do not intend to tackle it in this general form. On the contrary"~_nstead of 
starting with two arbitrarily given programs (say: independently conceived 
by two different authors) I am concerned with alternative programs that can 
be considered as products of the same mind and then the question becomes: 
how can we conceive (and structure) those two alternative programs so as to 
ease the job of comparing the two? 

I have done many experiments and my basic experience gained by them 
can be summed up as follows. Two programs evoking computations that 
establish the same net effect are equivalent in that  sense  and a pr ior i  not in 
any other. When we wish to compare programs in order to compare their 
corresponding computations, the basic experience is that it is impossible (or 
fruitless, unattractive, or terribly hard or what you wish) to do so when on 
the level of comparison the sequencing through the two programs differs. 
To be a little more explicit: it is only attractive to compare two programs 
and the computations they may possibly evoke, when paired computations 
can be parsed into a time-succession of actions that can be mapped on each 
other and the corresponding program texts can be equally parsed into 
instructions, each corresponding to such an action. 

This is a very strong condition. Let me give a first example. 

Excluding side-effects of the boolean inspections and assuming the value 
"B2" constant (i.e. unaffected by the execution of either " S I "  or "$2"),  we 

can establish the equivalence of the following two programs: 
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"if B2 then 

begin while B1 do S1 end 

else 

begin while B1 do $2 end" (1) 

"while B1 do 

begin if B2 then S1 else $2 end" (2) 

The first construction is primarily one in which sequencing is controlled 
by a selective clause, the second construction is primarily one in which 
sequencing is controlled by a repetitive clause. I can establish the equivalence 
of the output of the computations, but I cannot regard them as equivalent in 
any other useful sense. I had to force myself to the conclusion that (1) and 
(2) are "hard to compare". Originally this conclusion annoyed me very much. 
In the meantime I have grown to regard this incomparability as one of the 
facts of life and, therefore, as one of the major reasons why I regard the 
choice between (1) and (2) as a relevant design decision, that should not be 
taken without careful consideration. It is precisely its apparent triviality 
that has made me sensitive to the considerations that should influence such a 
choice. They fall outside the scope of the present section but I hope to return 
to them later. 

Let me give a second example of incomparability that is slightly more 
subtle. 

Given two arrays X[I :N] and Y[I:N] and a boolean variable "equal", 
make a program that assigns to the boolean variable "equal" the value: 
"the two arrays are equal element-wise". Empty arrays (i.e. N = 0) are 
regarded as being equal. 

Introducing a variable j and giving to "equal" the meaning "among the 
first j pairs no difference has been detected", we can write the following 
two programs. 

"j: = 0; equal: = true; 

while j ~= N do 
begin j: = j + 1; equal: = equal and (X[j] = YD']) end" (3) 

and 

"j: = 0; equal: = true; 
while j -¢ N and equal do 

begin j: = j + 1; equal: = (X[j] = YU])end". (4) 

Program (4) differs from program (3) in that repetition is terminated as 
soon as a pair-wise difference has been detected. For the same input the 
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number of repetitions may differ in the two programs and therefore the 
programs are only comparable in our sense as long as the last two lines of the 
programs are regarded as describing a single action, not subdivided into 
subactions. But what is their relation when we do wish to take into account 
that they both end with a repetition? To find this out, we shall prove the 
correctness of the programs. 

On the arrays X and Y we can define of 0 ~< j ~< N the N + 1 functions 
EQUALj as follows: 

for j = 0 EQUALj = true, 

for j > 0 EQUALj = EQUALj_ i  and (X[j] = Y[j]). (5) 

In terms of these functions it is required to establish the net effect 

equal = EQUAL N. 

Both programs maintain the relation 

equal = EQUALj (6) 

for increasing values of j, starting with j = 0. 

It is tempting to regard programs (3) and (4) as alternative refinements 
of the same (abstract) program (7): 

"j: = 0; equal: = EQUALo; 

while "perhaps still:equal ~ EQUALN" do 

begin j:  = j + 1; "equal: = EQUALj" end" (7) 

in which "perhaps still: equal -¢ EQUALN" stands for some sort of still open 
primitive. When this is evaluated 

equal = EQUALj 

will hold and the programs (3) and (4) differ in that they guarantee on different 
criteria that "equal" will have its final value EQUAL N. 

In program (3) the criterion is very naive, viz. 

j - - N .  

At the beginning of the repeated statement 

equal = EQUAL./ 

still holds. After the execution of " j ' =  j + 1" therefore 

equal = EQUALj_ 1 

holds and the assignment statement 

"equa l :=  equal and (X[j] = Y[j'])" 

is now a straightforward transcription of the recurrence relation (5). 

To come to program (4) some analysis has to be applied to the recurrence 
relation (5), from which can be derived (by mathematical induction again) that 
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EQUAL. /=  false implies EQUALs = false, and therefore EQUALj = false 
implies EQUAL. /=  EQUALN. If this situation arises, the equality "equal = 
EQUALN" can also be guaranteed and this leads to program (4). The set of 
(sub)computations the repeated statement has to cope with in program (4) 
is restricted to those with the initial state "equal = true" and therefore in 
program (4) the assignment "equal: = EQUAL/"  can be abbreviated to 

"equa l :=  (X[j] = YLi])" 

And now it is clear why the introduction of (7) as an abstraction of (3) 
and (4) was misleading. With "perhaps still: equal -~ EQUALN" we have 
stated the meaning of truth and falsity of a boolean expression without 
stating the expression itself and that was very tricky. We have tried to 
interpret (7) as a program in which part of the sequencing at its own level was 
undefined and varying over its refinements. As a result we have tried to view 
the last lines of (7) as a model for the last lines of both (3) and (4), but this 
was misleading because the computations to be evoked by them cannot be 
brought into a one-to-one correspondence. 

So much for programs that we consider as incomparable. Examples of 
comparable programs will be encountered in the following sections. A final 
remark" we have stated that "paired computations can be parsed into a 
time-succession of actions that can be mapped on each other". We have not 
required that actions so paired should have the same net effect! We may 
compare alternative programs for the same job but also different programs 
for similar jobs. 

9. A FIRST EXAMPLE OF STEP-WISE PROGRAM COMPOSITION 

In the section "On understanding programs." I have stressed the need for 
systematic sequencing so that the structure of the computations could be 
reflected in the structure of our program: in this way we can speak of the 
joint structuring of program and computations. In the current section I shall 
now try to give a little more content to the still rather vague notion of 
structuring computations. It will be a first effort to exploit our powers of 
abstraction to reduce the appeal made to enumerative reasoning; it will be a 
consequent application of the decompositions mentioned in the section "On 
understanding programs.". 

Instead of presenting (as a ready-made product) what I would call a well- 
structured program I am going to describe in very great detail the composition 
process of such a program. I do this because programs are not there: on the 
contrary, they have to be made, and the kind of programs I am particularly 
interested in are those which I feel to be reasonably well suited to our powers 
of construction and conception. 
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The task is to instruct a computer to print a table of the first thousand 
prime numbers, 2 being considered as the first prime number. 

Note 1. This example has been chosen because on the one hand it is sufficiently 
difficult to serve as a model for some of the problems encountered in pro- 
gramming, and on the other hand its mathematical background is so simple 
and familiar that our attention is not usurped by the problem. 

Note 2. I do not claim that my final program will be "the best one", measured 
by whatever yardstick any of my readers might care to choose. At least two 
readers of a previous version of this presentation--in which remainders were 
computed via a divide operation--reacted quite vehemently to it: "But 
everyone knows that the most efficient way to generate prime numbers is by 
using the Sieve of Eratosthenes." thereby blocking their ability to read any 
further! 

The basic pattern of my approach will be to compose the program in minute 
steps, deciding each time as little as possible. As the problem analysis pro- 
ceeds, so does the further refinement of my program. 

When an algorithm has to be made, the desired computation has to be 
composed from actions corresponding to a well-understood instruction 
repertoire. 

The simplest form of the program is 

description 0: 

begin "print first thousand prime numbers" end 

and when "print first thousand prime numbers" refers to an instruction from 
the well-understood repertoire, the description 0 solves the problem. For the 
sake of argument we assume that this instruction does not occur in the well- 
understood repertoire. Therefore we have to conceive a computation com- 
posed from "more primitive" actions that establishes the desired net effect. 
Our first proposal is to separate the generation of the prime numbers and 
their printing, and we propose description 1: 

begin variable "table p";  

"fill table p with first thousand prime numbers"; 

"print table p" 

end, 
describing that our computation consists of a time-succession of two actions 
and takes place in a state space containing a single variable, called "table p". 
The first action assigns a value to this variable, the second action is controlled 
by the (then current) value of this variable. 

Again, when "fill table p with first thousand prime numbers" and "print 
table p" occur in the well-understood repertoire (and "table p" occurs among 
the implicitly available resources) then our problem is solved. Again, for the 
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sake of argument, we assume this not to be the case. This means that in our 
next refinement we have to express how the effect of these two actions can be 
established by two further (sub)computations. Apart from that we have to 
decide, how the information to be contained in the intermediate value of the 
still rather undefined object "table p" is to be represented. 

Before going on, I would like to stress how little we have decided upon when 
writing down description 1, and how little of our original problem statement 
has been taken into account. We have assumed that the availability of a 
resource "table p" (in some form or other) would permit us to compute the 
first thousand prime numbers before printing starts, and on this assumption 
we have exploited the fact that the computation of the primes can be con- 
ceived independently of the printing. Of our original problem statement we 
have not taken into account very much more than that at least a thousand 
different prime numbers do exist (we had to assume this for the problem 
statement to make sense). At this stage it is still fairly immaterial what the 
concept "prime number" really means. Also, we have not committed our- 
selves in the least as regards the specific layout requirements of the print-out 
to be produced. Apparently it is the strength of our approach that the 
consequences of these two rather independent aspects of our original problem 
statement seem to have been allocated in the respective refinements of our 
two constituent actions. It suggests that we have been more or less successful 
in our effort to apply the golden principle "divide and rule". 

Resuming our discussion, however, we have to ask ourselves, to what extent 
the two subcomputations can now be conceived independently of each other. 
To be more precise "Have we now reached the stage that the design of the 
two subalgorithms (that have to evoke the two subcomputations) can be 
conceived by two programmers, working independently of each other?". 

When the two actions can no longer be regarded as invoked by instructions 
from the well-understood repertoire, neither can the variable "table p" any 
longer be regarded as an implicitly available resource. And in a way similar 
to the one in which we have to decompose the actions into subactions, we 
have to choose how the variable "table p" will be composed, viz. what data 
structure we select to represent the information to be handed over via "table 
p"  from the first action to the second. At some point this has to be decided 
and the questions are "when?" and "how?". 

In principle, there seem to be two ways out of this. The first one is to try 
to postpone the decision on how to structure "table p" into (more neutral, 
less problem-bound) components. If we postpone the decision on how to 
structure "table p", the next thing to do is to refine one of the actions or both. 
We can do so, assuming a proper set of operations on the still mysterious 
object "table p";  finally we collect these operations and in view of their 
demands we design the most attractive structure of "table p". 
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Alternatively, we can try to decide, here and now, upon the structure of 
"table p". Once it has been decided how the table of the first thousand primes 
will be represented, the refinements of both actions can be done fairly 
independently of each other. 

Both ways are equally tricky, for what will be an attractive algorithm for, 
say, the first subcomputation will greatly depend on the ease and elegance with 
which the assumed operations on "table p" can be realised, and if one or more 
turn out to be prohibitively clumsy, the whole edifice falls to pieces. Alter- 
natively, if we decide prematurely upon a structure for "table p"  we may well 
discover that the subcomputations then turn out to be awkward. There is 
no way around it" in an elegant program the structure of "table p" and the 
computations referring to it must be well-matched. I think that the behaviour 
of the efficient programmer can be described as trying to take the easiest 
decision first, that is the decision that requires the minimum amount of 
investigation (trial and error, iterative mutual adjustment etc.) for the 
maximum justification of the hope that he will not regret it. 

In order not to make this treatment unduly lengthy we assume that the pro- 
grammer finds the courage to decide that now the structure of "table p"  is the 
first thing to be decided upon. Once this position has been taken, two alter- 
natives immediately present themselves. On the one hand we can try to exploit 
that "a table of the first 1000 primes" is not just a table of a thousand 
numbersaas  would be a table of the monthly wages of 1000 employees in a 
fac tory~but  that all these numbers are different from each other. Using 
this we can arrange the information with a linear boolean array (with con- 
secutive elements associated with consecutive natural numbers) indicating 
whether the natural number in question is a prime number or not. Number 
theory gives us an estimation of the order of magnitude of the thousandth 
prime number and thereby a boundary of the length of the array that will 
suffice. If we arrange our material in that way we have prepared an easy 
mechanism to answer the question "is n (less than the maximum) prime or 
not?". Alternatively, we can choose an integer array in which the successive 
prime numbers will be listed. (Here the same estimate, obtained by means of 
number theory, will be used, viz. when a maximum value qf the integer array 
elements needs to be given a priori.) In the latter form we create a mechanism 
suited to answer the question "what is the value of the kth prime number, 
for k ~< 1000?". 

We grant the programmer the courage to choose the latter representation. 
It seems attractive in the printing operation in which it is requested to print 
the prime numbers and not to print natural numbers with an indication 
whether they are prime or not. It also seems attractive for the computing 
stage, if we grant the programmer the clairvoyance that the analysis of 
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whether a given natural number is a prime number or not, will have some- 
thing to do with the question of whether prime factors of the number to be 
investigated can be found. 

The next stage of our program refinement then becomes the careful state- 
ment of a convention regarding the representation of the still mysterious 
object "table p"  and a redefinition of the two operations in terms of this 
convention. 

The convention is that the information to be contained in "table p" will 
be represented by the values of the elements of the "integer array p[1:1000]", 
such that for 1 ~< k ~< 1000 p[k] will be equal to the kth prime number, when 
the prime numbers are arranged in order of increasing magnitude. (If a 
maximum value of the integers is implicitly understood, we assume that 
number theory allows us to state that this is large enough.) 

When we now want to describe this new refinement we are faced with a new 
difficulty. Our description 1 had the form of a single program, thanks to the 
fact that it was a refinement of the single action named "print the first 
thousand prime numbers", referred to in description 0. (In more conventional 
terms" description 1 could have the form of a procedure body.) This no longer 
holds for our next level, in which we have to refine (simultaneously, in a sense) 
three named entities, viz. "table p"  and the two actions, and we should 
invent some sort of identifying terminology indicating what refines what. 

For the continuation of our discussion we make a very tentative proposal. 
We say: description 0 is a valid text expressed in terms of a single named 
action "print first thousand prime numbers"; let this be identified by the 
code 0a. 

Description 1 is called "1" because it is the next refinement of description 
0; it contains a refinement of 0a--the only term in which description 0 is 
expressed--and is itself expressed in terms of three named entities to which 
we attach the codes: 

"table p"  

"fill table p with first thousand prime numbers" 

"print table p"  

la 

lb 

lc 

code numbers, starting with l, because description ! is expressed in terms of 
them, and "a",  "b"  and "c" being attached for the purpose of distinction. 

Now we have to describe our convention chosen for the representation of 
the information to be contained in "tal~le p", but this convention pertains to 
all three elements l a, 1 b and 1 c. Therefore we call this description 2; it should 
contain the descriptions of the three separate elements (I use the equality sign 
as separator) 
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description 2" 

1 a = " in te ge r  array  p[1 : 1000]"  

1 b = "make for k from 1 through 1000 p[k] equal to the kth prime number" 

l c = "print p[k] for k from 1 through 1000". 

Description 2 is expressed in terms of three named entities to which we 
give (in the obvious order) the codes 2a, 2b and 2c. (In code numbers, 
description 2 is very meagre: it just states that for l a, l b and l c, we have 
chosen the refinements 2a, 2b and 2c respectively.) 

Remark. In the representation of the information to be contained in "table 
p", we have chosen not to exploit the fact that each of the values to be printed 
occurs only once, nor that they occur in the order of increasing magnitude. 
Conversely, this implies that the action that has to take place under the name 
of 2c is regarded as a specific instance of printing any set of thousand integer 
values (it could be a table of monthly wages of thousand numbered 
employees !). The net effect of the printing action in this example is an uniquely 
defined as the first thousand prime numbers are" we conceive it, however, as a 
specific instance of a larger class of occurrences. In the further refinement of 
2c we deal with_ this whole class, the specific instance in this class being 
defined by the values of the elements of the array p. When people talk about 
"defining an interface" I often get the feeling that they overlook the pre- 
supposed generalisation, the conception of the class of "possible" actions. 

When 2b and 2c occur among the well-understood repertoire of instructions 
(and therefore 2a among the resources implicitly available) our whole problem 
is solved. For the sake of argument we again assume this not to be the case, 
and so we find ourselves faced with the task of conceiving subcomputations 
for the actions 2b and 2c. But now, thanks to the introduction of level 2, 
the respective refinements of 2b and 2c can be designed independently. 

The refinement of 2b: "make for k from 1 through 1000 p[k] equal to the 
kth prime number". 

We are looking for description 2b l, i.e. the first refinement of 2b. We 
introduce a fresh numbering after 2b (rather than calling our next description 
"3 something") in order to indicate the mutual independence of the refine- 
ments of 2b and 2c respectively. 

In description 2b 1 we have to give an algorithm describing how the elements 
of the array p will get their values. This implies that we have to describe, for 
instance, in what order this will happen. In our first refinement we shall 
describe just that and preferably nothing more. An obvious, but ridiculous 
version starts as follows (with "version number" enclosed within parentheses): 

2bl(1): 

beg in  p[1] :  = 2;  p[2] :  = 3; p[3] :  = 5; p[4] :  = 7;  p[5] :  = 11 ; . . . . . . . . .  end 
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implying that the programmer's knowledge includes that of a table of the first 
thousand primes. We shall not pursue this version as it would imply that the 
programmer hardly needed the machine at all. 

The first prime number being given (=  2), the thousandst being assumed 
unknown to the programmer, the most natural order in which to fill the ele- 
ments of the array p seems to be in the order of increasing subscript value, 
and if we express just that we arrive (for instance) at 

2b1(2): 

begin integer k, j; k ' =  0; j ' =  1; 

while k < 1000 do begin "increase j until next prime number"; 

k'  = k + 1; p[k]" = j e n d  

end 

By identifying k as the number of primes found and by verifying that our 
first prime number (= 2) is indeed the smallest prime number larger than 1 
(=the  initial value of j), the correctness of 2b1(2) is easily proved by 
mathematical induction (assuming the existence of a sufficient number of 
primes). 

Description 2b1(2) is a perfect program when the operation described by 
"increase j until next prime number"~call  it 2bl(2)a~occurs among the 
repertoire, but let us suppose that it does not. In that case we have to express 
in a next refinement how j is increased (and, again, preferably nothing more). 
We arrive at a description of level 2b2(2) 

2bl(2)a = 

begin boolean jprime; 

repeat j" = j + 1; 

"give to jprime the meaning' j is a prime number" 

until jprime 

end 

Remark.  Here we use the repeat-until clause in order to indicate that j 
has always to be increased at least once. 

Again its correctness can hardly be subject to doubt. If, however, we 
assume that the programmer knows that, apart from 2, all further prime 
numbers are odd, then we may expect him to be dissatisfied with the above 
version because of its inefficiency. The price to be paid for this "lack of 
clairvoyance" is a revision of version 2b1(2). The prime number 2 will be 
dealt with separately, after which the cycle can deal with odd primes only. 
Instead of 2b1(2) we come to 
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2b1(3): 

begin integer k, j;  p[1]: = 2; k: = 1 ; j: = I ; 

while k < 1000 do 

begin "increase odd j until next odd prime number"; 

k ' =  k + 1 ;p lk ] '=  j 

end 

end 

where the analogous refinement of the operation between quotes--"2b 1 (3)a" 
say--leads to the description on level 262(3): 

2bl(3)a = 

begin boolean jprime; 

repeat j: = j + 2; 

"give for odd j to jprime the meaning" j is a prime number"; 

until jprime 

end 

The above oscillation between two levels of description is in fact nothing 
else but adjusting to our convenience the interface between the overall 
strucl~ure and the primitive operation that has to fit into this structure. This 
oscillation, this form of trial and error, is definitely not attractive, but with a 
sufficient lack of clairvoyance and being forced to take our decisions in 
sequence, I see no other way: we can regard our efforts as experiments to 
explore (at a rather low cost!) where the interface can probably be most 
conveniently chosen. 

Remark. Both 2bl (2) and 2b 1(3) can be loosely described as 

begin "set table p and j at initial value"; 

while "table p not full" do 

begin "increase j until next prime number to be added"; 

"add j to table p" 

end 

end 

but we shall not do this as the sequencing in the two versions differs (see 
"On comparing programs") and we regard them as "incomparable". By 
choosing 2b1(3) we decide that our trial 2bl(2)--as 2bl(1)--is no longer 
applicable and therefore rejected. 

The change from 2b1(2) to 2b1(3) is justified by the efficiency gain at the 
levels of higher refinement. This efficiency gain is earned at level 2b2, because 
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now j can be increased by 2 at a time. It will also manifest itself in the still 
open primitive at level 2b2(3) where the algorithm for "give for odd j to 
jprime the meaning" j is a prime number" has only to cater for the analysis 
of odd values of j. 

Again: in 2b2(3) we have refined 2bl (3) with an algorithm which solves our 
problem when "give tbr o d d j  to jprime the meaning" j is a prime number"- -  
call it "2b2(3)a"--occurs among the well-understood repertoire. We now 
assume that it does not, in other words we have to evoke a computation 
deciding whether a given odd value o f j  has a factor. It is only at this stage 
that the algebra really enters the picture. Here we make use of our knowledge 
that we only need to try prime factors: furthermore we shall use the fact that 
the prime numbers to be tried can already be found in the filled portion of 
the array p. 

We use the facts that 

(1) j being an odd value, the smallest potential factor to be tried is p[2], 
i.e. the smallest prime number larger than 2 

(2) the largest prime number to be tried is p[ord - 1] when p[ord] is the 
smallest prime number whose square exceeds j. 

(Here I have also used the fact that the smallest prime number whose square 
exceeds j can already be found in the table p. In all humility I quote Don 
Knuth's comment on an earlier version of this program, where i took this 
fact for granted: 

"Here you are guilty of a serious omission! Your program makes use of a 
deep result of number theory, namely that if p,  denotes the nth prime 
number we always have 

Pn+l < P 2 . "  
Peccavi.) 

If this set is not empty, we have a chance of finding a factor, and as soon 
as a factor has been found, the investigation of this particular j value can be 
stopped. We have to decide in which order the prime numbers from the set will 
be tried, and we shall do so in order of increasing magnitude, because the 
smaller a prime number the larger the probability of its being a factor ofj .  

When the value of ord is known we can give for "give for odd j to jprime 
the meaning: j is a prime number" the following description on level 2b3(3): 

2b2(3)a = 

begin integer n; n' = 2; jprime" = true; 

while n < ord and jprime do 

begin "give to jprime the meaning" p[n] is not a factor o f j " ;  n" = n + 1 

end 

end 
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But the above version is written on the assumption that the value of ord, 
a function of j, is known. We could have started this refinement with 

begin integer n, ord; 

ord: = 1; while p[ord] '~ 2 ~ j do ord: = ord + 1; 
, ° ° ° ° ° ° 

i.e. recomputing the value of "ord" afresh, whenever it is needed. Here some 
trading of storage space for computation time seems indicated: instead of 
recomputing this function whenever we need it, we introduce an additional 
variable ord for its current value: it has to be set when j is set, it has to be 
adjusted when j is changed. 

This, alas, forces upon us some reprogramming. One approach would be to 
introduce, together with j, an integer variable ord and to scan the programs in 
order to insert the proper operations on ord, wheneverj is operated upon. I do 
not like this because at the level at which j is introduced and has a meaning, 
the function "ord" is immaterial. We shall therefore try to introduce ord only 
at its appropriate level and we shall be very careful. 

For 2b: "make for k from 1 through 1000 p[k] equal to the kth prime 
number" we write (analogous to level 2b1(3)) 

level 2b 1(4): 

begin integer k, j; p[1]: = 2; k: = 1 ; 
"set j  to one"; 

while k < 1000 do 
begin "increase odd j until next odd prime number"; 

k : = k + l ; p [ k ] : = j  

end 

end 

expressed in terms of 

2bl (4)a "increase odd j until next odd prime number" 

2b 1 (4)b "set j to one". 

In our next level we only introduce the subcomputation for 2bl(4)a; the 
other is handed down. 

level 2b2(4): 

2bl(4)a = 

begin boolean jprime; 

repeat "increase j with two"; 

"give for odd j to jprime the meaning" j is a prime number" 

until jprime 

end; 
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2bl (4)b = 2b2(4)b 

expressed in terms of 

2b2(4)b still meaning "set j to one" 

2b2(4)c "increase j with two" 

2b2(4)d "give for odd j to jprime the meaning" j is a prime number". 

It is only at the next level that we need to talk about ord. Therefore we 
now write 

level 2b3(4): integer ord; 

2b2(4)b = 

begin j ' =  1; "set ord initial" end; 
2b2(4)c = 

begin j" = j + 2; "adjust ord" end; 

2bZ(4)d = 

begin integer n; n" = 2; jprime" = true; 

while n < ord and jprime do 
begin "give to jprime the meaning" p[n] is not a factor o f j " ;  

n : = n + l  

end 
end 
expressed in terms of 

2b3(4)a "set ord initial" 

2b3(4)b "adjust ord" 

2b3(4)c "give to jprime the meaning: p[n] is not a factor o f j " .  

In our next level we give two independent refinements. (Note. We could 
have given them in successive levels, but then we should have to introduce an 
arbitrary ordering to these two levels. We could also try to treat the refine- 
ments separately--i.e, as separately as 2b and 2c--but  we feel that it is a little 
premature for this drastic decision.) We are going to express 

(1) that, ord being a non-decreasing function o f j  and j only increasing in 
value, adjust .ment of ord implies a conditional increase; 

(2) that, whether pin] is a factor of j is given by the question whether the 
remainder equals zero. 

This leads to 

level 2b4(4): 

2b3(4)a = 2b4(4)a 
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2b3(4)b = 

begin while "ord too small" do "increase ord by one" end; 

2b3(4)c = 

begin integer r; 
"make r equal to remainder o f j  over pin]"; 

]p r ime ' - -  (r # 0) 

end 

expressed in terms of 

2b4(4)a still meaning "set ord initial" 

2b4(4)b "ord too small" 

264(4)c "increase ord by one" 

264(4)d "make r equal to remainder of j over p[n]" 

If we have a built-in division, the implementation of "make r equal to the 
remainder o f j  over p[n]" can be assumed to be an easy matter. The case that 
the refinement of 2b4(4)d can be treated independently is now left to the 
interested reader. To give the algorithm an unexpected turn we shall assume 
the absence of a convenient remainder computation. In that case the algorithm 

" r ' =  j ;  while r > 0 do r ' =  r - p[n]" 

would lead to the (non-positive) remainder but it would be most unattractive 
from the point of view of computation time. Again this asks for the intro- 
duction of some additional tabulated material (similar to the way in which 
"ord"  has been introduced). 

We want to know whether a given value of] is a multiple ofp[n] for n < ord. 
In order to assist us in this analysis we introduce a second array in the 
elements of which we can store multiples of the successive prime numbers, as 
close to j as is convenient. In order to be able to give the size of the array we 
should like to know an upper bound for the value of ord; of course, 1000 
would be safe, but number theory gives us 30 as a safe upper bound. We 
therefore introduce 

integer array mult [1:30] 

and introduce the convention that for n < ord, mult [n] will be a multiple of 
p[n] and will satisfy the relation 

mult [n] < ] + p[n] 

a relation that remains invariantly true under increase of]. Whenever we wish 
to investigate, whether p[n] is a factor of j, we increase mult [n] by p[n] as 
long as 

mult [n] < j. 

i 
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After this increase mult [n] = j is the necessary and sufficient condition for 
j to be a multiple of p[n]. 

The low maximum value of ord has another consequence: the inspection 
"ord too small" can be expressed by 

"p[ord] T 2 ~. j "  

but this inspection has to be performed many times for the same value of ord. 
We may assume that we can speed up matters by introducing a variable 
(called "square") whose value equals p[ord] T 2. 

So we come to our final 

level 2b5(4): 

integer square; integer array mult [1 : 30]; 

2b4(4)a = 

begin ord: = 1 ; square: = 4 end; 

2b4(4)b = 

(square ~< j ) ;  

2b4(4)c = 

begin mult [ord]: = square; ord: = ord + 1 ; square: = p[ord] 1" 2 end; 

2b4(4)d = 

begin while mult In] < j do mult [n]: = mult In] + p[n]; r: = j - mult In] end 

which has made our computation close to an implementation of the Sieve of 
Eratosthenes ! 

Note. In the refinement of 2b4(4)d, when mult[n] is compared with the 
current value of j, multi-n] is increased as much as possible; this could have 
been done in steps of 2 * pin], because we only submit odd values o f j  and 
therefore are only interested in odd multiples ofp[n].  (The value of multi1] 
remains, once set, equal to 4.) 

The refinement of 2c "print p[k] f o r k  from 1 through 1000" is left to the 
reader. I suggest that the table should be printed on five pages, each page 
containing four columns with fifty consecutive prime numbers. 

Here I have completed what I announced at the beginning of this section, 
viz. "to describe in very great detail the composition process of such a 
[well-structured] program". I would like to end this section with some 
comments. 

The most striking observation is that our treatment of a very simple 
program has become very long, too long indeed for my taste and wishes, 
even if I take into account that essentially we did two things: we made a 
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program and we discussed extensively the kind of considerations leading 
to it. It is not so much the length of the latter part that bothers me (writers 
fill whole novels with the description of human behaviour); what bothers 
me is the length of the texts at the various levels. Therefore we may expect 
that notational technique will be one of our main concerns. 

But we have also had encouraging experiences. Giving full recognition to 
the fact that the poor programmer cannot decide all at once, we succeeded 
to a large extent in building up this program one decision at a time, and in 
our example quite a lot of programming was already done in its definite 
form while major decisions were still left open" irrespective of whether the 
final decisions are taken this way or that way, the coding of the earlier levels 
remains valid. In view of the requirement of program manageability, this 
is very encouraging. 

10. ON PROGRAM FAMILIES 

In our previous section we have considered the design of a program for a 
given task, but in doing so, we have considered our final program as an 
isolated object, a structure standing all by itself and to be judged on its 
private merits. Its structure was the result of successive decompositions; 
the purpose of this structure was to make a program in such a way that its 
correctness could be proved without undue intellectual labour. 

In this section I am going to explain why I prefer to regard a program not 
so much as an isolated object, but rather as a member of a family of "related 
programs". In traditional terminology we can think about related programs 
either as alternative programs for the same task or as similar programs for 
similar tasks. 

Why cannot the programmer confine his attention to the program he has 
to make and why has he to take into account such a whole family as well? 
For one thing, it is hard to claim that you know what you are doing unless 
you can present your act as a deliberate choice out of a possible set of things 
you could have done as well. But if we want to give due recognition to the 
difficulties that are specific to the construction of large complicated programs, 
there is a very practical justification. (And we have to recognise these specific 
difficulties: experience has shown that someone's proven ability to do an 
excellent job on a given scale is by no means a guarantee that, when faced 
with a much larger job, he will not make a mess of  it.) 

Certainly, one of the properties of large programs is that they have to be 
modified in the course of their life-time. A very common reason is that the 
program, although logically correct, turns out to evoke unsatisfactory 
computations (for instance unsatisfactory in one or more quantitative 
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aspects). A second reason is that, although the program is logically correct 
and even satisfactorily meeting the original demands, it turns out to be a 
perfect solution for not quite the right problem; one is faced with a re- 
statement of the problem and adaptation of the program. 

The naive approach to this situation is that we must be able to modify 
an existing program (and for this the curious term "program maintenance" 
has established itself). The task is then viewed as one of text manipulation; 
as an aside we may recall that the need to do so has been used as an argument 
in favour of punched cards as against paper tape as an input medium for 
program texts. The actual modification of a program text, however, is a 
clerical matter, which can be dealt with in many different ways; my point 
is that if we have our grip on. the program text primarily as on a linear 
sequence of symbols, the task to establish and to describe what has to be 
modified tends to become prohibitively difficult when the texts get longer and 
longer. 

If a program has to exist in two different versions, I would rather not 
regard (the text of) the one program as a modification of (the text of) the 
other. It would be much more attractive if the two different programs could, 
in some sense or another, be viewed as, say, different children from a common 
ancestor, where the ancestor represents a more or less abstract program, 
embodying what the two versions have in common. Hopefully, this common 
ancestor can be readily recognised in the (prae-)documentation. The intentions 
are 

(1) that the two versions share their respective correctness proofs as far 
as possible; 

(2) that the two versions share (mechanically) as far as possible the 
common (or "equal") coding; 

(3) that the regions affected by the modification are already well-isolated, 
a condition which is not met when the transition requires "brain-made" 
modifications scattered all over the text. 

Well, this is a lofty goal. It has been inspired by the potential similarity 
between the task of program modification and program composition: when 
a program has been built up to an intermediate stage of refinement, what 
has then been written down is in fact a suitable "common ancestor" for all 
possible programs produced by further refinements. It is the similarity 
between "the decision to be changed" and "the decision still left open": 
in both cases we are left with what remains when we abstract from such a 
decision. 

There is a second source of inspiration to be found in our experience. 
In the process of step-wise program composition, proceeding from outside 
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inwards, going towards progressive refinements, we have in the earlier 
stages not only postponed deciding how certain things would be done, but 
we have also postponed committing ourselves as to exactly what had to be 
done: with progressing refinement, more detail about the actual problem 
statement has been brought into the picture. (Later examples will show this 
even more clearly than the problem of the prime table.) As a result, our 
first levels of refinement are equally applicable for the members of a whole 
class of problem statements. 

In other words, in the step-wise approach it is suggested that even in the 
case of a well-defined task, certain aspects of the given problem statement 
are ignored at the beginning. That means that the programmer does .not 
regard the given task as an isolated thing to be done, but is invited to view 
the task as a member of a whole family; he is invited to make the suitable 
generalisations of the given problem statement. By :successively adding more 
detail he eventually pins his algorithm down to a solution for the given 
problem. 

All this is well-known, each competent programmer does so all the time. 
Yet I stress it for a variety of reasons. If the given problem statement is an 
elaborate affair, i.e. too much to be grasped in a single glance, he m u s t  

approach (and dissect) the problem statement in this way (see the section 
m h"" "On our inability to do uc ). Secondly, if the given problem is perfectly 

defined, it is a wise precaution to anticipate as many future changes in the 
problem statement as one can foresee and accommodate. This remark is 
not an invitation to make one's program so "general" that it becomes, say, 
unacceptably inefficient, as might easily happen, when the generalisations 
of the problem statement are ill-considered (which might easily happen 
when they have been dictated by the Sales Department !) But in my experience, 
even in traditional programming, it is a very worth-while exercise to look 
for feasible generalisations of conceivable utility, because such considerations 
may give clear guidance as to how the final progr~tm should be structured. 
But such considerations boil down to . . . . . .  conceiving (more or less 
explicitly) a whole program family! 

In an earlier section ("On the reliability of mechanisms.") the need for 
careful program structuring has been put forward as a consequence of the 
requirement that program correctness can be proved. In this section we are 
faced with another reason: program structure shouh:t be such as to anticipate 
its adaptations and modifications. Our program should not only reflect 
(by structure) our understanding of it, but it should also be clear from its 
structure what sort of adaptations can be catered for smoothly. Thank 
goodness, the two requirements go hand in hand. 
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1 1. ON TRADING STORAGE SPACE FOR COMPUTATION SPEED 

In present-day sequential computers (spring 1969) we can distinguish two 
main components, an active one (the processor) and a passive one (the 
store). The active component has the specific function to be fast, the passive 
one has the specific function to be large. The following is written on the 
assumption that this functional division is here to stay for a sufficient period 
of time to make a study of its consequences relevant. 

From the point of view of the programmer, storage space and computation 
time are then two distinct resources and I regard it as one of the responsibilities 
of the programmer--rather than of the system--to allocate them, i.e. to 
divide the load between them. It is to the consequences of this responsibility 
that the present section is devoted. This section is not devoted to techniques 
of estimating the various loads, i.e. to give quantitative criteria by which to 
influence the programmer's choice: it is devoted to the logical relation 
between the alternatives between which the programmer may choose. 

Note. It is not inconceivable that some of the choices can be left to the 
system. In all but the most trivial cases, however, design and establishment 
of the equivalence seem to require mathematical invention from the side of 
the programmer. All efforts to automate this problem-solving activity fall 
outside the scope of this monograph. 

In its most simple form we are faced with a computation that regularly 
needs the value of "FUN(arg)",  where " F U N "  is a given, computable 
function defined on the current value of one or more stored variables, 
collectively called "arg". In version A of the program, only the value of arg 
is stored and the value of FUN(arg) is computed whenever needed. In version 
B, an additional variable, "fun" say, is introduced, whose sole purpose is to 
record the value of "FUN(arg)"  corresponding to the current value of arg. 

Where version A has 

" a r g ' =  . . . . . . .  " (i.e. assignment to arg) 

version B will have 

"arg: . . . . . .  ; fun: = FUN(arg)" 

thereby maintaining the relation 

fun = FUN(arg) 

As a result of the validity of this relation, wherever version A calls for the 
evaluation of FUN(arg), version B will call for the current value of the 
variable fun. 

There are two possible reasons to prefer version B to version A. When 
the value of FUN(arg) is more frequently requested than assignments to 
arg take place, version B could require less computation time. If necessary 
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the technique can be refined by the introduction of a further (boolean) 
variable "fun up to date", indicating whether the relation "fun = FUN(arg)" 
is assumed to hold. Assignment to arg is then associated with 

"fun up to d a t e : -  false" ; 

whenever the value of FUN(arg) is needed, inspection of this boolean 
variable will tell, whether FUN(arg) has to be computed afresh; if so, the 
computed value will be assigned to fun and in accordance with its meaning 
"fun up to date" will be set to true. Let us call the last program version C. 
It is clear that these three programs, only differing where version A assigns 
to arg or uses the value of FUN(arg), are equivalent as far as their output 
is concerned; it is certainly not inconceivable that version B or C is derived 
from version A by mechanical means. 

But quite often the situation is not as simple as that and now we come to 
the second reason for introducing such a variable "fun". Often it is very 
unattractive to compute FUN(arg) from scratch for arbitrary values of arg, 
while it is much easier to compute how the value of FUN(arg) changes 
when the value of arg is changed. In that case, the adjustment of the value 
of "fun" is more intimately linked with the nature of the functional depen- 
dence than is suggested by 

"arg: = .  . . . . . .  ; fun: = FUN(arg)". 

Often this possibility is not only intimately linked to the nature of the 
functional dependence, but also to the "history of the variable arg" as the 
computation proceeds! We have seen a very striking example in the program 
for the prime table (see Section "A first example of step-wise program 
composition") with the introduction of "ord", which is functionally depen- 
dent on "j",  viz. "ord" is the minimum value satisfying 

p[ord] T 2 > j 

where the adjustment of "ord" was a very attractive operation thanks to 
the fact that " j"  was monotonically increasing in time. 

In my understanding of programs I want such additional variables that 
store redundant information, to be clearly recognised as such, even if it is a 
somewhat undefined functional relationship as in the case of the table 
"mult" from the same example. I am strongly inclined to view such programs 
as, say, optimising refinements of a more abstract program, even when the 
optimisation effected by the additional variables is essential when we want 
to make a program with a realistic performance. From the point of view of 
efficiency such an additional variable may be so vital that it may strike one 
as irresponsible daydreaming to conceive a level in which its presence has 
been abstracted from. The way in which such an additional variable is 
manipulated is often experienced as the body of the algorithm" it is often 
there that we harvest the fruits of our mathematical ingenuity. The point 
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is that, although the possibility of at least one such optimising refinement is 
essential for making something with a realistic performance, on closer 
inspection one often discovers that such an optimising refinement is far 
from unique, even on its coarsest level. 

Note. I remember one program in which the additional information was so 
redundant that not only the value of "fun" could be derived from that of 
"arg" but also the other way round. Suddenly the relation between "fun" 
and "arg" became symmetric, and I have been seriously bothered by the 
question" what entitled me to treat them so asymmetrically? The program 
in question generated all the solutions of a combinatorial puzzle. On closer 
inspection it turned out that there was a second combinatorial puzzle, where 
it could be proved that there existed a one-to-one correspondence between 
the solutions of the two problems. If I had solved the second combinatorial 
problem I would have found the role of "fun" and "arg" interchanged! 
In traditional programming, where such functional dependencies are not 
explicitly shown, the two puzzles would probably be solved by identical 
programs, whereas I made two differently structured programs. And I think 
rightly so, because the single program for the two puzzles needed a different 
proof for its correctness, depending on which puzzle it was supposed to solve, 
and this seems somewhat unfair when we also wish that our understanding 
of the computations be reflected in the structure of our programs! 

12. ON A PROGRAM MODEL 

Before we have a program we must have Composed it; after we have a program 
- - i f  there was any sense in making it--we shall have it executed. In this section 
I shall not stress the activities of program composition and of program 
execution too much, and I shall try to view the program as a static object. 
We want to view it as a highly structured object and our main question is" 
what kind of structures do we envisage and why? Our hope is that eventually 
we shall arrive at a program structure that is both nice to compose and nice 
to execute. Mentally, of course, I am unable to ignore these processes, but 
at present I do not want to discuss them; in particular: I do not want to 
discuss a design methodology (whether to work "from outside inwards" or 
the other way round), nor do I want to discuss implementation consequences 
now. Again, in order not to complicate matters too much, I shall restrict 
myself to sequential programs. 

If I judge~a program by itself, my central theme, I think, is that I want 
the program written down as I can understand it, I want it written down 
as I would like to explain it to someone. However, without further qualifica- 
tion these are just motherhood statements, so let me try and see whether I 
can be more specific. 
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Let us consider a very simple computation, in which three distinct actions 
can be distinguished to take place in succession, say: input of data, manipula- 
tion (i.e. the computation proper) and the output of the results. One way of 
representing the program is as a long string of statements" 

begin 

end 

The next form adds some labels for explanatory purposes: 

begin 
begin of input" . . . . . . . . . . . . . . . . .  

° , . . . .  ° ° ° ° , ° ° , . ° ° 

begin of manipulation: . . . . . . . . . . . . . . . . .  

begin of output:  

end 
suggesting to us, when we read the text, what is going to happen next. 

Still better, we write: 

begin 
input '  begin . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  end; 

manipulation" begin . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  end; 

output" begin . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  end 
end 

where the labels are considered less as markers of points in the program 
text than as names of regions--as indicated by the bracket pairs " b e g i n -  
end"- - tha t  follow the label, or as names of the three actions in which the 
computation has been decomposed. However, if we take this point of view, 
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the three "labels" are still comments, i.e. explanatory noise for the benefit 
of the interested (human) reader, whereas I would like to consider them as 
an integral part of the program. I want my program text to reflect somewhere 
the fact that the computation has been decomposed into a time-succession 
of the three actions, whatever form these might take upon closer inspection. 
A way of doing this is to write somewhere the (textual) succession of the 
three (abstract) statements 

"input;  manipulation; output" 

on the understanding that the time-succession of these three actions will 
indeed be controlled from the above textual succession, whereas the further 
refinements of these three actions will be given "somewhere else", perhaps 
separately, but certainly without relative ordering. 

Well, if closed subroutines had not been invented more than twenty years 
ago, this would have been the time to do it! In other words: we are returning 
to familiar grounds, to such an extent that many of my readers will even 
feel cheated! I don't, because one should never be ashamed of sticking to a 
proven method as long as it is satisfactory. But we should get a clear picture 
of the benefits we should like to derive from it, if necessary we should adjust 
it, and finally we should create a discipline for using it. Let me therefore 
review the subroutine concept, because my appreciation for it has changed 
in the course of the last year. 

I was introduced to the concept of the closed subroutine in connection 
with the EDSACt,  where the subroutine concept served as the basis for a 
library of standard routines. Those were the days when the construction of 
hardware was a great adventure and many of the standard routines were 
means by which (scarce0 memory and computation time could be traded 
for circuitry: as the order code did not comprise a divide instruction, they 
had subroutines for division. Yet I do not remember having appreciated 
subroutines as a means for "rebuilding" a given machine into a more 
suitable one, curiouslyenough. Nor do I remember from those days sub- 
routines as objects to be conceived and constructed by the user to reflect 
his analysis: they were more the standard routines to be used by the user. 
Eventually I saw them mainly as a device for the reduction of program 
length. But the whole program as such remained conceived as acting in a 
single homogeneous store, in an unstructured state space; the whole computa- 
tion remained conceived as a single sequential process performed by a single 
processor. In the following years, in the many programming courses I gave, 
I preached the gospel faithfully and I have often explained how the 

? "The Preparation of Programs for an Electronic Digital Computer; with Special 
Reference to the EDSAC and the use of a Library of Subroutines", M. V. Wilkes, 
D. J. Wheeler and S. Gill, Addison-Wesley Press, 1951. 
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calling sequence handed over the return address and how the subroutine 
li_1_,, • would then begin by setting "the n~ --i.e. the return jump- -a t  its own 

end. At present I would rather view the main program as having its own 
instruction counter that just continues "counting" upon the completion of 
the subroutine execution and would certainly not regard the "sleeping value" 
as a parameter handed over to the subroutine. (Still the old view has found 
its way into the hardware of many machines. We have seen machines in 
which a subroutine jump stored the link at "address zero" of the subroutine 
and ordered instruction fetch to be resumed at "address one", an arrangement 
which makes re-entrant code and recursive subroutines somewhat hard to 
implement. And even in this decade we find machines which store at program 
interrupt the "program status" of the interrupted program at a location 
associated with the interrupt rather than with the interrupted program !) 

Ten years later, when ALGOL 60 emerged, the scene changed and we did 
not talk any more about closed subroutines: we called them "procedures" 
instead. They remained to be appreciated by the programmer as a very 
handy means for shortening the program text, and more and more pro- 
grammers started to use them for the purpose of structuring, so that program 
adaptation to foreseen changes in problem specification could be confined 
to the replacement of one or more procedure bodies, or to a procedure call 
with some actual parameters changed. But the main novelty was the concept 
of the local variables. 

This was reflected in two important aspects. The first one was the concept 
of "scope", i.e. the idea that not all variables are homogeneously accessible 
all through the program: local variables of a procedure are inaccessible from 
outside the procedure body, because outside it they are irrelevant. What 
local variables a procedure needs to do its private task is its private concern; 
it is no concern of the calling main program and the fact that the main 
program can (and must !) be conceived independently of these local variables 
is judiciously reflected. We may have some misgivings about the specific 
scope rules, as embodied in ALGOL 60, but we should appreciate them as a 
very significant step in the right direction. 

The second aspect of the novelty was given by the fact that procedures 
could be used recursively, more precisely, that a procedure was allowed to 
call itself, either directly or indirectly. The virtue of this facility has been 
the subject of many hot debates; as far as I can see the discussion has died 
down. The argument against recursive procedures was always an efficiency 
argument: non-re-entrant code could be executed so much more efficiently. 
But with the advent of multiprogramming another need for flexible storage 
allocation has emerged. And if there are still machines in which non- 
re-entrant code can be executed much more efficiently, i.e. in which the use 
of recursive routines is punished by too heavy a penalty, then I would venture 
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the opinion that the structure of such a machine should now be called 
somewhat old-fashioned. The recursive procedure, however, forced upon 
us the recognition of the difference between its (static) text and its (dynamic) 
activationmits "incarnation" as it has been called. The procedure text is 
one thing; the set of local variables it operates upon this time is quite another 
matter. 

So far, so good, but now some of its shortcomings (and I don't care, 
whether you call them linguistic or conceptual). Local variables are "created" 
upon procedure entry, and are "annihilated" upon procedure exit. It is 
precisely this automatic control over the life-time of variables pertaining to 
a procedure incarnation that allows us to implement the (recursive) procedures 
by means of a stack (i.e. a last-in-first-out storage arrangement). The fact 
that local variables pertaining to an incarnation only exist during the incar- 
nation make it impossible for the procedure to transmit information behind 
the scenes from one incarnation to the next. To overcome this the concept 
"own" has been introduced, but this is no solution to the problem" what 
own variables are really good for becomes very unclear in the case of 
recursion and, secondly, it is impossible to write a set of procedures sharing 
a number of own variables. (We can simulate this by declaring them in an 
outer block, embracing the procedure declarations, but then the scope 
rules make them too generally accessible" they can then no longer be regarded 
as "behind the scenes".) Our conclusion--by no means new and by no 
means only mine!--is that the concept "own" as introduced in ALGOL 60 
must be regarded as ill-considered, and that we must look for new ways to 
control and describe life-time, accessibility and identity of local variables. 

But I have stiIl another complaint about the procedure concept, and that 
is that it is still primarily regarded as a means for shortening the program 
text (although it may be a text of unknown length as in the case of recursion). 
The semantics of the procedure call are described in terms of the famous 
"copy rule": the procedure call is to be understood as a short-hand, because, 
semantically speaking, we should replace it with a copy of the text of the 
procedure body (with suitable adjustments of identifiers and substitutions 
for parameters) whereupon the thus modified text will be executed by the 
same machine as the one executing the main program. It remains (a repre- 
sentation for) a single program text to be executed by a single sequential 
machine. And it is precisely this picture of a single machine that does not 
satisfy me any longer. 

I want to view the main program as executed by its OWl], dedicated 
machine, equipped with the adequate instruction repertoire operating on 
the adequate variables and sequenced under control of its own instruction 
counter, in order that my main program would solve my problem if I had 
such a machine. I want to view it that way, because it stresses the fact that 
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the correctness of the main program can be discussed and established 
regardless of the availability of this (probably still virtual) machine" I don't  
need to have it, I only need to have its specifications as far as relevant for 
the proper execution of the main program under consideration. 

For me, the conception of this virtual machine is an embodiment of my 
powers of abstraction, not unlike the way in which I can understand a 
program written in a so-called higher level language, without knowing how 
all kinds of operations (such as multiplication and subscription) are imple- 
mented and without knowing such irrelevant details as the number system 
used in the hardware that is eventually responsible for the program execution. 

In actual practice, of course, this ideal machine will turn out not to exist, 
so our next task--structurally similar to the original one--is to program 
the simulation of the "upper" machine. In programming this simulation 
we have to decide upon data structures to provide for the state space of the 
upper machine; furthermore we have to make a bunch of algorithms, each 
of them providing an implementation of an instruction assumed for the 
order code of the upper machine. Finally, the "lower" machine may have a 
set of private variables, introduced for its own benefit and completely outside 
the realm and scope of the upper machine. But this bunch of programs is 
written for a machine that in all probability will not exist, so our next job 
will be to simulate it in terms of programs for a next-lower machine, etc. 
until finally we have a program that can be executed by our hardware. 

If we succeed in building up our program along the lines just given, we 
have arranged our program in layers. Each program layer is to be understood 
all by itself, under the assumption of a suitable machine to execute it, while 
the function of each layer is to simulate the machine that is assumed to be 
available on the level immediately above it. 

Why this model? What are the benefits we hope to derive from it? Let me 
try to list them. 

(1) Our experience as recorded in "A first example of step-wise program 
composition" strongly suggests that the arrangement of various layers, 
corresponding to different levels of abstraction, is an attractive vehicle for 
program composition. 

(2) It is not vain to hope that many a program modification can now be 
presented as replacement of one (virtual) machine by a compatible one. 

(3) We may hope that the model will give us a better grip on the problems 
that arise when a program has to be modified while it is in action. If a 
machine at a given level is stopped between two of its instructions, all lower 
machines are completely passive and can be replaced, while all higher 
machines must be regarded as engaged in the middle of an instruction" their 
state must be considered as being in transition. In a sequential machine the 
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state can only be interpreted in between instruction executions and the 
picture of this hierarchy of machines, each having its own instruction counter 
~"count ing its instructions"~seems more profitable if we wish to decide 
at any given moment, what interpretations are valid. In the usual pro- 
gramming language in which computational progress is measured in a 
homogeneous measure~say "the grain" of one statement~I feel somewhat 
helpless when faced with the question of which interpretations are valid 
when. 

(4) We may hope that the model will even assist us in recovery problems 
--total  or partial--when some malfunctioning has been detected. (Recently 
I have been involved in the design and construction of a multiprogramming 
system, but one of the most annoying things was our total inability to 
estimate (mechanically) the scope of the disaster when a memory cell gave a 
parity alarm. The only safe reaction we could implement was instantaneous 
machine stop, hardly a solution to be proud of!) 

(5) The picture of a layered hierarchy of machines provides a counter 
poison to one of the dangers evoked by ruthless application of the principle 
"Divide and Rule", viz. that different components are programmed so 
independently of each other that duplication of work (or worse) takes place. 
The fact that a layer contains "a bunch of programs" to be executed by some 
conceptual machine stresses the fact that the programs of this bunch are 
invited to share the same primitives. Separation of tasks is a good thing, on 
the other hand we have to tie the loose ends together again! 

13. A SECOND EXAMPLE OF STEP-WISE PROGRAM COMPOSITION 

With a picture of program structure as a layered hierarchy of machines 
emerging, my fingers are itching to play with it, i.e. to make another program. 
The notational techniques employed should not be regarded as a well- 
considered proposal: they have been chosen to suit my fancy and should 
be regarded as part of the experiment. 

The problem is the following one. There is given a line printer which is 
controlled by two commands "NLCR" (New Line Carriage Return) which 
defines the utmost left position of the next line as the "currently printable 
position", and the command "PRSYM(n)" which prints a character 
identified by the value of the integer parameter n on the currently printable 
position and defines the position immediately to the right of the printed 
position as the new currently printable position. (For our discussion we 
can regard lines of infinite length as permissible.) We shall only make use of 
two specific values of n, called "space" and "mark" respectively. "PRSYM 
(space)" causes the currently printable position to remain blank, "PRSYM 
(mark)" will print a given, visible character, some sort of asterisk say. 
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Furthermore two integer function of an integer argument are given, 
satisfying 

for 0 ~< i < 1000:0 ~< fx( i )  < 100 and 0 ~< fy(i)  < 50. 

Now we have to make a program printing 50 lines, numbered from top to 
bottom by a y-coordinate running from 49 through 0, the positions on a line 
being numbered from left to right by an x-coordinate running from 0 through 
99. On the thousand positions (or less in the case of coincidence) given by 

x = fx( i )  and y = fy(i)  for some i satisfying 0 ~< i < 1000 

a mark has to be printed; all other positions on the paper have to remain 
blank. In other words: a curve is given in a discrete parameter representation 
and we wish to use the line printer as a digital plotter. 

I have used this problem extensively in viva voce examinations and the 
majority of the students quickly discover that, due to the absence of OLCR 
(Old Line Carriage Return) and of a "backspace", the order in which the 
printable positions have to be served is dictated by the printing commands 
and, secondly, that this order has nothing to do with the order of the marks 
if we number them, say, in the order of increasing i. As a result they quickly 
conclude that the use of storage seems indicated: first the thousand/-values 
should be scanned, i.e. the page image should be stored in a convenient 
manner, while afterwards, under control of the stored image, the page 
should be printed. (To be more precise: we assume that the computer has 
sufficient store for this purpose and that the computation of the function 
values "fx (i)" and "fy(i)" may be so time-consuming that we wish to have 
them computed only once for each/-value.) 

We now document this design decision, and I propose the following piece 
of text: 

COMPFIRST 

begin 

draw: {build; print}; 

var image; 

instr build(image), print(image) 

end 

The above piece of documentation, which is considered as an integral 
part of the final program, should be interpreted as follows. 

It refers to a machine called " C O M P F I R S T "  (we use capitals for machine 
names and try to express the type of decision reflected in the program made 
for them). 

The next line gives a named algorithm" its name is "draw" (this being 
assumed to be the name of the total program to be made, that has to "draw" 
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a curve), the algorithm expresses the desired time-succession of two actions, 
building the image in store, followed by printing paper under control of the 
stored value. 

In the last two lines we give the declarations (or declaration headings), 
naming the components of the machine for which the above algorithm is 
intended. The first line describes that the name "image" will be used for the 
data structure that has to accommodate the page image; the variable 
"image" is the only component of the state space of this machine. Its 
instruction code comprises two instructions, named "build" and "print" 
respectively. 

Before proceeding, it should be noted that we have used abbreviations, 
some of which I do not yet know whether they are very wise or very foolish. 
They have both to do with the fact that the variable "image" is a unique 
variable of this type. 

If the state space should have contained two images, I would have written 

"type image; 

image var image 1, image2" 

expressing that the state space comprises two variables (called "image l" 
and "image2" respectively), with the same set of possible values, this set 
being characterised by their type, called "image". In a later step the type 
image would enjoy further detailing and this would apply to both variables. 
As the set of variables of this type contains only one element, I have ventured 
not to distinguish between the set (called "image") and its only element 
(also called "image"). When descriptions in COMPFIRST (such as 
"build(image)") refer to "image", they refer to the variable; when later 
structuring detail is given, it refers to the type image. 

The last line contains the code of instructions which are like the procedure 
heading. In general they contain the type of the parameters, where the call 
contains the variables as actual parameters. Again this seems foolish if the 
parameter is uniquely given by its type and for this reason we have mentioned 
the actual parameter in the declaration, and have omitted the mentioning 
of "image" in the code describing the algorithm "draw". Thus we can reserve 
the explicitly mentioned actual parameters for the case where this combina- 
torial freedom is actually used. 

Before proceeding, I would like to stress that our little algorithm named 
"draw" can and should be regarded as a program written for a machine. 
We should write the manual for this machine; in it we have to state 

(1) that the operation "build" assigrts a value to the variable "image" 
specifying the image to be printed on paper as given by the functionsfx andfy. 

(2) that the operation "print" prints the picture on paper as specified by 
the current value of the variable "image". 
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The fact that it can really be regarded as an algorithm for a machine is 
perhaps most easily seen when we consider alternative algorithms for "draw" 
e.g. 

draw: (print; build) 

is wrong, because now the action "print" is undefined; 

draw: {build; build; print) 

is correct but unnecessarily time-consuming, because the second action 
"build" assigns to "image" the value it already has; 

draw: {build; print; print) 

would make sense: it would print the picture twice. 
We now resume our programming task. If we had machine " C O M P F I R S T "  

at our disposal, the little program named "draw" to be executed by it would 
do the job. For the sake of argument and in order to be realistic we now 
assume that we do not have at our disposal such a machine tailored to our 
needs, and therefore our next task (similar to the previous one !) is to make 
such a machine. 

There are three named entities assumed, viz. "build", "print" and "image", 
where the first two refer to the latter one. As a consequence; a further 
detailing of the latter one will affect the two first ones; also, it ig very hard 
to give any further detailing of the action "print" without any further 
commitments as to the structure of "image". The action "build", however, 
admits a further detailing all by itself. And it is for that reason that we take 
"build" as our first candidate for further refinement. 

We have to describe how the variable "image" will get its value corres- 
ponding to the proper positioning of the thousand marks. As a total operation, 
it assigns a value to a variable, whose earlier value was undefined: anticipating 
that the marks will be added "one at a time", we see, that addition of a next 
mark will turn out to be an action operating on an already defined value 
of the variable "image". It therefore seems attractive to view the whole 
setting of the marks as operating on an already defined value, viz. the one 
corresponding to the blank page. This decision leads to 

CLEARFIRST 

begin 
build: {clear; setmarks); 

instr clear(image), setmarks(image) 

end 

where the action "clear" assigns to image the value corresponding to a 
picture of fifty blank lines, where the action "setmarks" adjusts the initial 
value of image to the one in which the thousand (or less) marks of the curve 
have been added. 
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Again, CLEARFIRST is a machine for which alternative programs could 
have been written, e.g. 

build: {clear} 

would make sense, but would produce fifty blank lines as output; 

build: {setmarks; clear} 

would contain an undefined operation; 

build: {clear; clear; setmarks} 

would contain a superfluous operation, just as 

build: {clear; setmarks; setmarks} 

would, because the second action "setmarks" would only add marks to the 
picture that would already be there and therefore would not change the 
value of "image". 

(Note on notation used. The algorithm explaining "build" in terms of 
"clear" and "setmarks" does so without explicitly mentioning "image", 
because we do not wish to use the actual parameter notation in algorithms 
unless its actual combinatorial freedom is in fact used in this machine. 

Furthermore, "build" being a one-parameter operation no separate 
identifier for its formal parameter has been introduced. Also this abbreviation 
on my part could turn out to be very unwise.) 

The next step in the design of the computationNbecause it can be made 
without any further commitments is to describe how the thousand marks 
of the curve will be dealt with in turn. For the time being I propose the 
following write-up: 

ISCANNER 

begin integer i; 

setmarks: {i: = O; while i < 1000 do {add mark; i plus 1 } }; 

instr add mark(i, image) 

end 

This algorithm is to be understood in a machine whose instruction repertoire 
comprises "add mark(i, image)" which will change the value of "image" in 
accordance with the addition of the ith mark. It describes the order in which 
the marks are dealt with; it shows all marks will be dealt with exactly once. 

But this is not all" a new variable (viz. "i") has been introduced, the 
algorithm appeals to a set of actions referring to this variable (" i :=  0", 
"i < 1000" and "i plus 1") and if I were completely consistent, it seems 
that I should list them at the bottom, as possibly requiring further clarifica- 
tion at a later stage, just as "add mark". I have not done so (I have treated 
them along the same lines as the while-do clause). From the point of view of 
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language semantics this separate treatment of an implicitly understood 
type integer does not seem attractive, and it seems hard to justify, why the 
type integer is treated differently from the type "image": both are implicitly 
understood in this machine. 

Yet I have done it. All the time I design programs for non-existing machines 
and add: "if we now had a machine comprising the primitives here assumed, 
then the job is done". This is, logically speaking, correct; in practice it is a 
joke, because we know very well that we cannot assume a general purpose 
machine to be available whose instruction code is so very well tailored to 
our needs. We should not close our eyesmnor feign to do so!--to our 
responsibility to provide such primitives in a later stage of the design. When 
I now appeal to a well-understood type "integer" and the operations defined 
on variables of such a type in this exceptional manner, I do so with the 
intention of expressing that--although these facilities have to be provided 
in some form or another--providing these facilities fall outside the scope 
of the programmer's responsibility and also that the programmer will 
accept any reasonable implementation of them. 

Again we are left with a primitive that admits further refinement without 
commitments regarding the other primitives. We have to describe how 
dealing with mark no. i can be expressed in terms of dealing with a position 
on the page: we create the machine dealing with the computation of this 
position. 

COMPPOS 

begin integer x,y; 

add mark: (x: = fx ( i ) ;  y: = fy( i ) ;  mark pos }; 

instr mark pos (x, y, image) 

end 
where "mark pos" will change the current value of the variable "image" in 
accordance with the addition of a mark with the co-ordinates "x" and "y"  
on the picture to be printed. 

(Note. In the last refinement it is explicitly assumed that the functions 
f x ( i )  and fy( i )  can be evaluated in any order of their argument values. If 
these two thousand function values were to be read from an input stream, 
pair wise in a prescribed order of/-values, then the last two machines would 
have to be merged into a single one.) 

By now I see no possibility of further refinement without committing 
myself to the structure of the still rather vague type "image". How do we 
propose that this value will be stored? We have to structure the variables 
of type "image", or, what amounts to exactl3, the same thing, we have to 
choose a representation for its possible values. 
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While lecturing at various places I have described versions of this program 
to different audiences, and it may be worth-while to point out that at least 
twice part of my audience was deeply troubled by the time I had reached 
this stage. They felt for instance, that I could not claim that my program, 
as far as developed, was correct; they objected to my remark that 

draw: {build; print; print} 

would produce the same picture twice, for how did I know, that "print" did 
not (by means of some side-effect) change the value of "image" before I 
had made the primitive "print"? The answer to this, of course, is that 
"print" has to do what has been stated and should not do what has not 
been stated. But then more objections came: I had failed to show that the 
representation was unique, perhaps it was such, that "print" was only a 
partial function, undefined for some possible values of "image", etc. The 
answer to this seems to be the following" legitimate as such concerns are, 
they should be dealt with at the right moment, i.e. not before we commit 
ourselves to a representation. It is apparently the strength of our approach 
that so much of the program could be written down independently of the 
representation to be chosen for the values of the type "image". What we 
have done so far seems indeed a judicious exploitation of our power of 
abstraction (here abstraction of the particular representation to be chosen 
for the data structure "image"). 

But even if we now come to the conclusion that the time has come to 
decide upon the data structure for the type "image" we still do not need to 
commit ourselves completely. Faced with the question how to structure 
our variable now, we can take our decisions step-wise, just as we have done 
with the algorithmic refinements encountered so far. 

We recall that the origin of the problem was to be found in the circumstance 
that the printing primitives "PRSYM" and "NLCR"  forced the computation 
to produce the picture line after line going from top to bottom. Let us try 
to give recognition to that fact by regarding the image as composed of an 
array of lines. I then come to the following next level. 

LINER 

begin integer j; 
image: {array line{0 : 49] }; 

print" {j" = 49; while j >i 0 do {lineprint(line[j]); j minus 1 }}; 

clear: {j := 49; while j i> 0 do {lineclear(line[j]); j minus 1 }}; 

mark pos: {linemark(line[y])}; 

type line; 

instr lineprint(line), lineclear(line), linemark(x, line) 

end 
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In the last line but one we have introduced a type called "line"; a type, 
I recall, is regarded as a collection of distinguishable values and a variable 
of such a type can, at any moment, have one of this collection as its value. 
The first line of code expresses that the type "image" is composed of an array 
of 50 elements of type "line", numbered from 0 through 49, and, being the 
only type composed from this type, again we abstain from introducing a 
new identifier (wisely or not). 

Then, "print", "clear", and "mark pos", being operations that were 
understood as operating on an "image" are translated in algorithms expressed 
in terms of operations on a line. In the code of these algorithms, the (true) 
actual parameter specifies which line; at the end of the description we give 
the instruction list, indicating that the actions operate on "a line"; we have 
given the type, but not the parameter. 

This level introduces some new features. To start with (as in explaining 
"image") we treat the structural refinement of a data type on a footing very 
similar to the algorithmic refinements (as applied to "print", "clear" and 
"mark pos"). Before this level, our approach could have been regarded as 
an effort to establish a discipline for "subroutinisation"--if the reader will 
excuse this horrible term!--now we observe that that characterisation of 
our effort covers only half of what we are trying to do, as we are trying to 
apply a similar technique to data structures as well. Secondly, our previous 
machine explained just one entity (instruction or data type) in contrast 
to "LINER",  which explains a whole bunch of them. The point is that we 
try to associate with each level a separate design decision; the decision taken 
here is to understand the image from now onwards in terms of lines, and 
therefore all operations dealing with an image as such have to be translated 
in terms of operations dealing with its lines. The image has been "explained 
away", the only unusual type we still have to deal with is the type "line" 
and that is what we are going to do now. I draw your attention to the fact 
that in the level to come, we have to deal with lines: that lines are used to 
compose images from is no longer relevant! 

To represent a line we have many different possibilities, e.g. a list of the 
the x-coordinates of the positions where a mark should be printed (possibly 
sorted in order of increasing x-value), a boolean array, of 100 elements, each 
element indicating whether the corresponding positibn on the line of the 
picture should be marked, or an integer array of 100 elements, each element 
having the value "mark" or "space" of the PRSYM-parameter for the 
corresponding printable position. The last representation caters for extension 
when different curves (with different marks) have to be printed in the same 
picture; therefore we select the last one. 
This leads to 
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LONGREP 

begin integer k; 

line: {integer array sym[0 : 99]}; 

lineprint: {k: = 0; while k < 100 do {PRSYM(sym[k]);  k plus 1 }; NLCR}; 

lineclear: {k:= 0; while k < 100do {sym[k] :=  space; k plus 1 }}; 

linemark: {sym[x] := mark} 

end 
This however leads to an implementation filling out the line with spaces 

at the righthand side of the rightmost mark" it is like banging the space 
bar until the bell rings when we want to effect the transition to a new para- 
graph while writing a letter! 

The next version suppresses superfluous PRSYM-commands and even 
leaves those elements of the variable of type "line" undefined that do not 
need to be defined. With each line a counter " f "  is associated, giving the 
number of PRSYM-commands to be given for that line. Clearing a line 
now shrinks into setting " f" to  zero! 

SHORTREP 

begin integer k; 
line: {integer f ;  integer array sym[0 : 99] }; 

lineprint: {k: = 0; while k < f d o  {PRSYM(sym[k]);  k plus 1 } ; NLCR}; 

lineclear: {f: = 0}; 

linemark: {sym[xl : = mark; 

i f f  ~< x do {k: = f ;  while k < x do {sym[k] : = space; k plus 1 }; 

f : = x +  1}} 

end 
Note added later. 

The above program is essentially the program as I have shown it to at 
least five different audiences. Now, two months later, while thinking at 
leisure about correctness proofs, I suddenly realise that the given algorithm 
for "linemark" betrays my past, for it is a piece of lousy coding, compared 
with the following alternative: 

linemark: {while f ~< x do {sym[f]  : = space; f plus ~ 1 }; 

sym[x] : = mark} 

a version which guarantees that whenever " s y m [ x ] : =  mark" is executed, 
the relation "x < f "  will always be satisfied: it is precisely the function of 
the first line to see to this. The reader is invited to try to understand both 
versions of linemark and to compare both reasonings. He will then agree 
with my judgement that the original version is lousy. 
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The second version jumped into my mind on account of the following 
observation. The conditional clause 

"if B do S" 

is used in programs in two different ways. On the one hand we have the 
applications, in which the execution of the statement S does not invalidate 
the truth of B, on the other hand we have the situations in which the execution 
of the statement S is guaranteed to invalidate the truth of B. In the latter 
case, it is the function of the conditional statement to ensure that after its 
execution B will not hold. It is then, essentially, a shortcut for 

"while B do S", 

which has the property of invalidating the truth of B (provided that it stops), 
but the justification of the shortcut requires a separate proof that the repeated 
statement will be executed at most once. (In "A first example of step-wise 
program composition" we did not bother to introduce this shortcut on 
level 264(4) where he wrote 

"while "ord too small" do "increase ord by one .... ; 

here a conditional clause would have done the job !) 

14. ON WHAT WE HAVE ACHIEVED 

One of the metaphors in which I find myself thinking about the program 
structure envisaged regards the program as a necklace, strung from individual 
pearls. 

We have described the program in terms of levels and each level contained 
"refinements" of entities that were assumed available in higher levels. These 
refinements were either dynamic refinements (algorithms) or static refine- 
ments (data structures) to be understood by an appropriate machine. I use 
the term "pearl" for such a machine, refinements included. 

Our previous program consists of a necklace of six pearls, in order either 

COMPFIRST 

CLEARFIRST 

ISCANNER 

COMPPOS 

LINER 

LONGREP 

or  
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COMPFIRST 

CLEARFIRST 

ISCANNER 

COMPPOS 

LINER 

SHORTREP. 

LONGREP and SHORTREP are two different pearls, they explain the 
same concepts (from the "upper face") into the same concept (of the "lower 
face"); only the particular refinements differ: they are as alternative programs 
for the same job and the same machine. 

Changing a program will be treated as replacing one or more pearls of 
the original necklace by one or more other pearls. The pearl is the individual 
unit from which programs are composed. Making a program (as a member 
of a class of related programs) is now regarded as a two-stage process: 
making pearls (more than strictly necessary) and then stringing a fitting 
necklace out of (a selection of) them. 

The reasons for this two-stage approach are many. In designing a program 
we have to consider many, many alternative programs and once our program 
is finished, we will have to change it (into one of the alternative ones). As 
long as programs are regarded as linear strings of basic symbols of a pro- 
gramming language and, accordingly, program modification is treated as 
text manipulation on that level, then each program modification must be 
understood in the universe of all programs (right or wrong!) that can be 
written in that programming language. No wonder that program modification 
is then a most risky operation! The basic symbol is too small and meaningless 
a unit in terms of which to describe this. The pearl, embodying the independent 
design decision or, as the case may be, an isolated aspect of the original 
problem statement, is meant to be the natural unit for such modifications. 

To rephrase the same argument" with the birth of ALGOL 60, syntax was 
discovered as a powerful means for expressing structure in a program text. 
(Syntax became so glorified that many workers in the field identified 
Computing Science with Syntactic Analysis!) It was slightly overlooked, 
however, that by expressing structure via syntax, this structure is only given 
very indirectly, i.e. to be derived by means of a parsing algorithm to be 
applied to a linear sequence of basic symbols. This hurts if we realise that 
many a program modification leaves large portions of the structure un- 
affected, so that after painful re-parsing of the modified text the same 
structure re-emerges! I have a strong feeling that the adequacy of context- 
free methods for the representation of structure has been grossly over- 



NOTES ON STRUCTURED PROGRAMMING 61 

estimated. (In my immediate environment the following program bug in an 
ALGOL 60 program was brought to my attention. A program produced 
erroneous output with a completely checking implementation which in 
addition to the program text requires a final "progend" after the last "end"; 
this additional character is refused everywhere else so that a correct "begin-  
end" bracketing can be established. It turned out that 

(1) somewhere in the program a closing string quote was omitted; 

(2) somewhere further down in the program text an opening string quote 
was omitted; 

(3) the "begin - end" structure of the resulting program was syntactically 
correct; 

(4) the identifiers declared between the two omissions were only used 
between the two omissions, so that even context-dependent checks were 
unable to give alarm. 

Having already my doubts as to the adequacy of context-free methods for 
expressing macroscopic structure, I was delighted when this bug was shown 
to me !) 

The more I think about pearls, the more I feel that something like them 
is the only way out of it, if we recognise our responsibility to take (for a 
large program) say a thousand (possible) versions into consideration. You 
cannot expect the programmer to make all these thousand versions from 
scratch, independent of each other. The only way I see to produce such a 
potential variety is by a combinatorial technique, i.e. by making more pearls 
(say 250) than needed for a single necklace (say 200) and stringing a necklace 
from a particular selection. I see no other feasible way. The other mechanism 
to achieve great variety by combinatorial means is permutation, but this is 
denied to us because the final necklace must be a fitting necklace and, given 
the pearls, the order in which they have to be strung on the thread to produce 
a fitting necklace is pretty well defined. And also: if it is not, the permissible 
change of order is pretty irrelevant! 

Also, the pearl gives a clear status to an "incomplete" program, consisting 
of the top half of a necklace: it can be regarded as a complete program to be 
executed by a suitable machine (of which the bottom half of the necklace 
gives a feasible implementation). As such, the correctness of the upper half 
of the necklace can be established regardless the choice of the bottom half. 
Between two successive pearls we can make a "cut" which is a manual for a 
machine, provided by the part of the necklace below the cut and used by 
the program represented by the part of the necklace above the cut. This 
manual serves as an interface between the two parts of the necklace. We feel 
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this form of interface more helpful than regarding data-representation as 
an interface between operations, in particular more helpful towards ensuring 
the combinatorial freedom required when a program has to be adapted. 

Another remark concerns the range of validity of concepts along the 
necklace. For instance, the concept "image" is introduced in our top pearl 
"COMPFIRST"  and is explained away in our bottom pearl but one, viz. 
"LINER".  If we now come to the conclusion that the program as envisaged 
is too demanding on storage space so that we cannot afford to introduce 
the variable "image", we are faced with a major program revision and we 
have to replace the top five pearls by other ones, because that is the range 
of validity of the concept "image"! The bottom pearl (either "LONGREP"  
or "SHORTREP") ,  however, can be retained. (I mention this as an example 
of the fact that pearl exchange is by no means restricted to exchange of the 
bottom pearl.) 

With respect to the validity range of concepts along the necklace I would 
like to ask your attention for an observation which thrilled me the first time 
I made it. (In retrospect it is pretty obvious and that is exactly why it may 
be worth-while to be explicit about it.) With each pearl we associate "an 
independent design decision" and the ordering of the pearls along the 
necklace therefore implies an ordering of the design decisions. Can we change 
this order? Yes, we can, although we then have different pearls. By way of 
experiment I have followed the well-known advice: if you are faced with 
two primitives~in our case "build" and ~"print"--decide immediately upon 
their interface~in our example "image"--so that the two primitives can now 
be refined independently of each other. So I did, and I came to the following 
form of necklace 

COMPFIRST 

LINER'  

CLEARFIRST'  

ISCANNER'  

COMPPOS' 

SHORTREP 

(the four middle pearls being primed to indicate that they refer to different 
pearls, although they embody the same decisions as the ones in the original 
set). The resulting program is much messier. Why? 

Along the necklace we can indicate for each concept its range of validity: 
of course they overlap and we can view them as the individual threads from 
which the whole explanation is twined, as a kind of "logical rope". The 
messy version has a logical rope twined from more and sometimes longer 
individual threads" its logical rope is thicker, the whole construction is more 
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tightly interconnected. The observation thrilled me because it gave a very 
convincing demonstration (at least for me!) that elegance, clarity and the 
like have indeed marked quantitative aspects (as Mozart knew: many of 
his compositions that make one catch one's breath are misleadingly simple, 
they seem to be made just out of practically nothing!). 

We can phrase the observation in more technical terms. The primed version 
is messy because the image is explained away in terms of lines at too early a 
stage, thereby forcing us to explain "CLEARFIRST",  " ISCANNER" and 
"COMPPOS" in terms of lines, while they could still be explained in terms 
of the image, i.e. independent of the representation to be chosen for it. Or, 
in other words, in the original version we have made a more judicious 
exploitation of our power of abstraction than in the primed one. The larger 
the number of pearls independent of the particular representation, the more 
adaptable one's program and the more easily understandable~because 
that set of pearls can be understood at a higher level of abstraction. The 
experience seems to indicate that the goals of adaptability and clarity have 
been given some substance and (what is more) go by their very nature hand 
in hand. This is very encouraging (although not surprising). 

It also gives~me at leas t~a somewhat clearer picture of the scope of my 
present efforts. Whatever I shall develop, it will not be a General Problem 
Solver, not  a mechanical one, not even one written for the benefit of the 
human problem solver. But it may give the human some appreciation for 
the various aspects of "elegance" of a solution when he succeeds in finding 
one. And as such it may give him a guide line. 

15. ON GROUHN6 AND SEQUENCING 

While we are considering a programming tool in which explicit recognition 
has been given to the hierarchy of levels of abstraction, the present section 
is also applicable to programming in programming languages as they are 
understood today, viz. on a constant semantic level. (And there is a fair 
chance that the current section has its morals outside the restricted field of 
programming, for it seems to be concerned with problem solving in general.) 

! shall illustrate my point with two examples, both of which, again, I have 
used in viva voce examinations. I owe the first example to Niklaus Wirth. 

The problem is to construct a program generating non-empty sequences 
of O's, l's and 2's without non-empty, element-wise equal, adjoining sub- 
sequences, generating these sequences in alphabetical order until a sequence 
of length 100 (i.e. of 100 digits) has been generated. The programmer may 
make use of the knowledge that a sequence of length 100 and satisfying the 
conditions actually exists. The start of the list of sequences to be generated is: 
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0 
01 
010 
0102 
01020 
010201 
0102010 
0102012 

. . . . . .  . o 

Each solution (apart from the first one) is an extension (by one digit) 
of an earlier solution and the algorithm is therefore a straightforward 
backtracking one. 

We are looking for the "good"  sequences, we assume a primitive available 
for the investigation of" whether a trial sequence is good. If" it is good, the 
trial sequence is printed and extended with a zero to give the next trial 
sequence; if" the trial sequence is no good, we perform on it the operation 
"increase" to get the next trial sequence, i.e. final digits = 2 are removed 
and then the last remaining digit is increased by 1. (The operations "extend 
with zero" and "increase" guarantee that trial sequences are generated in 
alphabetical order, the solutions, being a selection from them, will then be 
printed in alphabetical order as well.) The algorithm will start investigating 
the following trial sequences, those marked by an asterisk will be rejected as 
"no good"" 

0 
* 00 

01 
010 

* 0100 
* 0 1 0 1  

0102 
01020 

* 010200 
010201 
0102010 

* 01020100 
* 01020101 
* 01020102 
* 0102011 

0102012 
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I tbund the majority of my students inclined to make a program with the 
following structure: 

"set trial sequence to single zero; 

repeat if good then 

begin print trial sequence; extend trial sequence with zero end 

else 

increase trial sequence 

until length = 101" 

Although a program along these lines produces the correct output, 
objections can--and to my taste: should--be made against it. The first 
objections regards the stopping criterion" when a solution of length 100 
has been printed, w e  (knowing the algorithm) can deduce that after that for 
the first time the trial sequence will have length = 101 and this is now the 
criterion to stop, but this is a rather indirect and tortuous way to establish 
the stopping criterion. (How tortuous it is was clearly demonstrated by those 
students who did not see that an unnecessary trial sequence was generated 
and declared for the trial sequence an array of 100 elements instead of 101.) 
The second objection is that the operation "increase trial sequence" never 
increases its length" after rejection of a trial sequence a superfluous test 
on the length is performed. (When I used this example for student examina- 
tion examinations 1 had not stressed very explicitly in my lectures any 
problem solving principles, so my disappointment was not too severe. In a 
sense I am glad to have observed these examinations, for it was for me an 
incentive to stress problem solving principles as far as I could find, formulate 
and teach them.) 

The program to which the above objections do not apply treats the empty 
sequence as a virtual solution, not to be printed. It has--to the same level of 
detailmthe following structure: 

"set trial sequence empty; 

repeat extend trial sequence with zero; 

while no good do increase trial sequence; 

print trial sequence 

until length = 100" 

Here length is the length of the solution printed (if any), thus avoiding 
the tortuous reasoning for the stopping criterion. Also no superfluous last 
trial sequence (never to be investigated) will be generated, thanks to the 
fact that we have two loops inside each other, superfluous length testing 
no longer occurs. Those for whom efficiency is the main criterion will 
probably be most convinced by the last observation. I myself, who attach 
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considerable importance to understandability, am attracted to the latter 
program because I can interpret it as a further refinement of the program 
structure 

"set sequence empty; 

repeat transform sequence to next solution; 

print sequence 

until length = 100" 

This (more abstract) program is only concerned with sequences that are 
solutions: on this level of description one can ignore that the transition 
from one solution to the next takes place via a sequence of trial solutions 
that turn out to be failures. 

I owe to Joe Weizenbaum the second example. Make a program that, for 
given positive integer n, determines the smallest number s that can be 
decomposed into the sum of two nth powers in at least two non-trivially 
different ways. 

(for n = 1 s = 2 = 01 + 21 -" 11 + 1 ~ 

n = 2 s = 25 = 0 2 + 5 2 = 3 2 -I- 4 2 

n = 3  s =  1729= 13 + 123=  93 + 103 

n = 4 s = 635318657 = 594 + 1584= 1334 + 1344 ) 

When I first used this example in an oral examination, it took the student 
twenty minutes to get somewhat familiar with the problem and he then 
sketched a searching algorithm which--when patched up--could indeed 
find a number that allowed multiple decompositions into sums of two nth 
powers, but he could not prove that when his algorithm produced a value s 
that it would be the minimum value. (As a matter of fact he had, up till then, 
ignored that part of the problem statement.) 

He then regrouped his forces and made a program of the following form: 

"integer s, k; 

s : =  1; 

r e p e a t s : =  s +  1; 

k : =  "the number of ways in which s can be decomposed as the sum 
of two nth powers" 

until k > 1 

thus arriving at a hopelessly inefficient algorithm. The error he made was 
the decision at too early a stage to investigate the natural numbers in 
succession, the overwhelming majority of which are not decomposable at all. 
Reasoning that the value we are looking for is the smallest decomposable 
number satisfying an additional property, one comes to an algorithm whose 
first sketch could be 
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"'integer k, s, t; 

t: = 1 (and further initialisation); 

repeat s: = "smallest decomposable value larger than t"; 

k: = "the number of ways the above minimum is obtained" 

t :=  s 

until k > 1" 

By storing a collection of triples (number pairs with their corresponding 
s-value), among which each time the pair(s) with minimum s-value exceeding 
t will occur and adjusting this collection each time t is increased, a program 
emerges that is orders of magnitude more efficient, t jumping from decom- 
posable value to the next decomposable value. Programming (or problem 
solving in general?) as the judicious postponement of decisions and commit- 
ments! 

16. DESIGN CONSIDERATIONS IN MORE DETAIL 

Preceding sections--in particular "A first example of step-wise program 
composition." have evoked the criticism that I have oversimplified the 
design process almost to the extent of dishonesty; I don't think t~is criticism 
fully unjustified and to remedy the situation I shall treat two examples in 
greater detail. The first example is my own invention; I have tried it out 
in a few oral examinations and finally I have used it at the end of my course 
"An introduction into the Art of Programming" in the classroom. I posed 
the problem to an audience of fifty students and together, with me as leader 
of the discussion, they solved the problem in 90 minutes. 

We consider a character set consisting of letters, a space(sp) and a 
point(pnt). Words consist of one or more, but at most twenty letters. An 
input text consists of one or more words, separated from each other by one 
or more spaces and terminated by zero or more spaces followed by a point. 
With the character valued function RNC (Read Next Character) the input 
text should be read from and including the first letter of the first words up 
to and including the terminating point. An output text has to be produced 
using the primitive PNC(x) (i.e. Print Next Character) with a character 
valued parameter. If the function of the program were to copy the text, the 
following program would do (assuming character valued variables at our 
disposal) 

char x; 

repeat x ' =  RNC; PNC(x)until  x = pnt 

In this example, however, the text is to be subjected to the following 
transformation: 



68 E. W .  DIJKSTRA 

(1) in the output text, successive words have to be separated by a single 
space 

(2) in the output text, the last word has to be followed by a single point 

(3) when we number the words 0, 1, 2, 3, . . .  in the order from left to 
right (i.e. in which they are scanned by repeated evaluation of RNC), the 
words with an even ordinal number have to be copied, while the letters of 
the words with an odd ordinal number have to be printed in the reverse 
order. 

For instance (using " - "  to represent a space) the input text 

" t h i s ~ i s - - a - s i l l y - - p r o g r a m m . "  

has to be transformed into 

"this-si-a-yllis-program." 

My reader is cordially invited to try this program himself, before reading 
on and to record his considerations so as to enable himself to compare them 
with the sequel. (It should take an experienced programmer much less than 
90 minutes !) 

The unknown length of the non-empty input text suggested a program of 
the structure 

prelude; 

repeat something until ready; 

coda 

but immediately this question turned up" "With how much do we deal 
during a single execution of "something"?". Four suggestions turned up: 

(1) a single character of the input text 

(2) a single character of the output text 

(3) a word (of both texts) 

(4) two successive words (of both texts) 

The first two suggestions were rejected very quickly and without much 
explicit motivation, al thoughwor because?mit is not too difficult to provide 
it. (The first one is unattractive because the amount of output that can be 
produced on account of the next character of the input text varies wildly; 
for the second suggestion a similar objection holds. Apart from that, a 
program with a loop in a loop is in general cleaner: this suggests to look 
for larger portions.) The audience rejected the fourth suggestion on account 
of the remark that the terminating point could come equally well after an 
even number of words as after an odd number of words. To make the 
selection of the third suggestion explicit, we wrote on the blackboard: 
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prelude; 

repeat process next word until point read; 

coda 
Everyone was satisfied in as far as this program expresses neatly that the 

output words are dealt with in exactly the same order as the corresponding 
input words are read, but it does not express that half of the words are to be 
printed in reverse order. When this was pointed out to them, they quickly 
introduced a state variable for the purpose. A first suggestion was to count 
the number of words processed and to make the processing dependent on 
the odd/eveness of this count, but a minor hesitation from my side was 
enough for the discovery that a boolean variable would meet the situation. 
It was decided that the "prelude" should include 

"forward: = true" 

while in "process next word" the printing in the order dependent on the 
current value of "forward" should be followed by 

"forward: = non forward" 

For me it was very gratifying to see that they introduced the variable 
"forward" before bothering about the details of word separation, which 
then became their next worry. It took them more time to realise that a 
further refinement of "process next word" required exact specification of 
which characters of the input text were going to be read and which characters 
of the output text were going to be printed at each execution of the repeatable 
statement. In fact, I had to pose the question to them and, after having done 
so, I asked them in which of the two texts the grouping presented itself 
most naturally. They selected the output text and chose the following 
grouping (indicating separation with a vertical bar)" 

I this-1 si-I a-I yllis-1 program. I 

i.e. in units of a word followed by a proper terminator. I then asked for the 
corresponding grouping of the input characters. When their attention had 
been brought to the terminators, they suggested (from right to left!) the 
following separation of the input characters: 

[this i t s - -a  [-s ! illy--p I rogram--,  l , 

as soon as one of them had remarked that the program could only "know" 
that an output word should be followed by a space after having "seen" the 
first letter of the next input word. I then remained silent, leaving them 
gazing at their grouping of the symbols until one of them discovered that 
the exceptional grouping of the characters of the first input word was 
inelegant, that the grouping should be 

t I h i s ~ i  I s - -a  I-s I illy--p I rogram--.  I , 

i.e. that the first character of the first word should be read in the prelude 
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Another variable was introduced and we arrived at 

boolean forward; char x; 

forward: = true; x: = RNC; 

repeat process next word; 

forward:-- non forward 

until x = pnt 

in which the second line represents the prelude; in the meantime it had been 
decided that the coda could be empty. 

The above stage had been reached after the first 45 minutes and we had 
our interval for coffee. Personally I felt that the problem had been solved, 
that from now onwards it was just a matter of routine; as it turned out, my 
audience was not practised enough and it took another 45 minutes to complete 
the program. 

Unanimously they decided to introduce a 

char array c[1:20] 

to store the letters of the word. (No one discovered that reading the letters 
and printing them in the reverse order could be done by a recursive routine !) 
Essentially, four things have to be done: the letters of the word have to be 
read, the letters of the word have to be printed, enough has to be read to 
decide which terminator is to be printed and the terminator has to be printed. 
I did not list these four actions, I did not ask for an explicit decision on how 
to group and/or combine them. The audience decided that first all reading 
should be done and thereafter all printing. (From their side this was hardly 
a conscious decision.) 

Trying to refine the reading and the printing process they hit an unsuspected 
barrier: they were--at  least for me, surprisingly--slow in discovering that 
they still had to define an interface between reading and printing through 
which to transmit the word to be processed, no matter how obvious this 
interface was. It took a long time before anyone formulated that c[i] should 
equal the ith character of the word when read from left to right. Perhaps 
half of the audience was wondering what all the fuss was about, but it took 
an equally long time to discover that the length of the word needed some 
form of representation as well. No one suggested to do this by storing a 
terminator, they introduced a separate integer "/",  counting the number of 
letters of the word. They decided that the first word "this" should be 
represented by 

c[1] = " t" ,  c[2] = "h", c[3] = "i", c[4] = "s" and l = 4 

They still had difficulty in arriving at the reading cycle and it was only 
when I had said repeatedly "so we have decided that " l"  is going to represent 
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the number of letter of the word stored in the array" that they arrived for 
the beginning of the reading process at 

l : =  O; 

repeat l : =  1 + 1; c [ / ] : =  x; x : =  RNC until x = sp or x = pnt 

(In the first draft "or x = pnt" was missing, but this was remedied quickly.) 
Once this was on the blackboard they completed the reading process without 
much hesitation: 

while x = sp do x: = R N C  

When we turned our attention to the printing process, they were more 
productive. Clearly the reading process had shown them the purpose of the 
interface and suggestions came from various sides. I had never described 
the dilemma to them (see page 24), whether to code an alternative 
clause selecting between two repetitions or a repetitive clause repeating an 
alternative statement. I was waiting for the dilemma to turn up, it came 
and I showed it to them. Then I had a surprise, for one of the students 
suggested to map the two loops on each other with the aid of more variables. 
We introduced three integers "k. inc, term" and the printing of the letters 
became 

if forward then begin k : =  0; inc :=  + 1 ; t e r m : =  l end 

else b e g i n k : = l +  1 ; i n c : =  - 1 ; t e r m : =  1 end; 

repeat k : =  k + inc; PNC(c[k])  until k = term 

followed by 

if x = pat  then PNC(pnt)  else PNC(sp). 

Thus we arrived at the following program: 

boolean forward; char x; char array c[l :20]; integer l, k, inc, term; 

forward: = true; x : = RNC;  

repeat l: = 0; 

repeat l : =  l + 1 ; c[l]:= x ;x :=  R N C  unti lx = sp or x = pnt; 

while x = sp do x ' =  RNC;  

if forward then begin k ' =  0; i n c ' =  + 1; t e r m ' =  lend 

e l s e b e g i n k : =  1 +  1 ; i n c : =  - 1 ; t e r m : =  1 end; 

repeat k: = k + inc; PNC(c[k])  until k = term; 

i f x  = pnt then PNC(pnt)  else PNC(sp);  

fo rward :=  non forward 

until x = pnt 
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This section has not been included because the problem tackled in it is 
very exciting. On the contrary, I feel tempted to remark that the problem 
is perhaps too trivial to act as a good testing ground for an orderly approach 
to the problem of program composition. This section has been included 
because it contains a true eye-witness account of what happened in the 
classroom. It should be interpreted as a partial answer to the question that 
is often posed to me, viz. to what extent I can teach programming style. 
(I never used the "Notes on Structured Programming"--mainly addressed 
to myself and perhaps to my colleagues--in teaching. The classroom 
experiment described in this section took place at the end of a course 
entitled "Introduction into the Art of Programming", for which separate 
lecture notes--with exercises and all tha tnwere  written. As at the moment 
of writing the students that followed this course have still to pass their 
examination, it is for me still an open question how successful I have been. 
They liked the course, I have heard that they described my programs as 
"logical poems", so I have the best of hopes.) 

17. THE PROBLEM OF THE EIGHT QUEENS 

This last section is adapted from my lecture notes "Introduction into the 
Art of Programming". I owe the example--as many other good ones--to 
Niklaus Wirth. This last section is added for two reasons. 

Firstly, it is a second effort to do more justice to the process of invention. 
(As a matter of fact I start where the student is not familiar with the concept 
of backtracking and aim at discovering it as I go along.) 

Secondly, and that is more important, it deals with recursion as a program- 
ming technique. In preceding sections (particularly in "On a program model") 
I have reviewed the subroutine concept; there it emerged as an embodiment 
of what I have also called "operational abstraction". In the relation between 
main program and subroutine we can distinguish quite clearly two different 
semantic levels. On the level of the main program the subroutine represents 
a primitive action; on that level it is used on account of "what it does for 
us" and on that same level it is irrelevant "how it works". On the level of 
the subroutine body we are concerned with how it works but c a n n a n d  
should--abstract from how it is used. This clear separation of the two 
semantic levels "what it does" and "how it works" is denied to the designer 
of a recursive procedure. As a result of this circumstance the design of a 
recursive routine requires a different haental skill, justifying the inclusion of 
the current section in this manuscript. The recursive procedure has to be 
understood and conceived on a single semantic level: as such it is more like 
a sequencing device, comparable to the repetitive clauses. 
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It is requested to make a program generating all configurations of eight 
queens on a chessboard of 8*8 squares such that no queen can take any of 
the others. This means that in the configurations sought, no two queens 
may be on the same row, on the same column or on the same diagonal. 

We don' t  have an operator generating all these configurations, this 
operator is precisely what we have to make. Now there is a very general way 
(cf. "On grouping and sequencing") of tackling such a problem, which is as 
follows. 

Call the set of configurations to be generated: set A. Look for a set B of 
configurations with the following properties: 

(1) set A is a subset of set B 

(2) given an element of set B it is not too difficult to decide whether it 
belongs to set A as well 

(3) we can make an operator generating all elements of set B. 

With the aid of the generator (3) for the elements of set B, all elements of 
set B can then be generated in turn; they will be subjected to the decision 
criterion (2) which decides whether they have to be skipped or handed over, 
thus generating elements of set A. Thanks to (1) this algorithm will produce 
all elements of set A. 

Three remarks are in order. 

(1) If the whole approach is to make sense, set B is not identical to set A, 
and as it must contain set A as a (true) subset, it must be larger than set A. 
For reasons of efficiency, however, it is advisable to choose set B "as small as 
possible": the more elements it has, the more elements of it have to be 
skipped on account of the decision criterion (2). 

(2) We should look for a decision criterion that is cheap to apply, at least 
the discovery that an element of B does not belong to A should (on the 
average) be cheap. Also this is dictated by efficiency considerations, as we 
may expect set B to be an order of magnitude larger than set A, i.e. the 
majority of the elements of B will have to be rejected. 

(3) The assumption is that the generation of the elements of set B is 
easier than a direct generation of the elements of set A. If, nevertheless, the 
generation of the elements of set B still presents difficulties, we can repeat 
our pattern of thinking, re-apply the trick and look for a still larger set C 
of configurations that contains B as a subset etc. (And, as the careful reader 
will observe, we shall do so in the course of this example.) 

Above, we have sketched a very general approach, applicable to many, 
very different problems. Faced with a particular problem, i.e. faced with a 
specific set A, the problem of course is what to select for our set B. 
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In a moment of optimism one could think that this is an easy matter, as we 
might consider the following technique. We list all the mutually independent 
conditions that our elements of set A must satisfy and omit one of them. 
Sometimes this works but as a general technique it is too naive" its short- 
comings become apparent when we apply it blindly to the problem of the 
eight queens. We can characterise our solutions by the two conditions 

(1) there are 8 queens on the board 

(2) no two of the queens can take each other. 

Omitting either of them gives for set B the alternatives 

B l: all configurations with N queens on the board such that no two queens 
can take eachother 

B2: all configurations of 8 queens on the board. 

But both sets are so ludicrously huge that they lead to utterly impractical 
algorithms. So we have to be smarter. The burning question is: "How?" .  

Well, at this stage of our considerations, being slightly at a loss, we are 
not so much concerned with the efficiency of our final program as with the 
efficiency of our own thought processes! So, if we decide to make a list of 
properties of solutions, in the hope of finding a useful clue, this is a rather 
undirected search and therefore we should not invest too much mental 
energy in such a search, that is: for a start we should restrict ourselves to 
their obvious properties. 

(I gave the puzzle as a sobering exercise to one of the staff members of 
the Department of Mathematics at my University, because he expressed 
the opinion that programming was easy. He violated the above rule and, 
being, apart from a pure, perhaps also a poor mathematician, he started 
to look for interesting, non-obvious properties. He conjectured that if the 
chessboard were divided in four squares of 4*4 fields, each square should 
contain two queens, and then he started to prove this conjecture without 
having convinced himself that he could make good use of it. He still has 
not solved the problem and, as far as I know, has not yet discovered that 
his conjecture is false.) 

Well, let us go ahead and let us list the obvious properties we can think of. 

(a) No row may contain more than one queen, 8 queens are to be placed 
and the chessboard has exactly 8 rows. As a result we conclude that 
each row will contain precisely one queen. 

(b) Similarly we conclude that each column will contain precisely on queen. 

(c) There are 15 "upward"  diagonals, each of them containing at most one 
queen, i.e. 8 upward diagonals contain precisely one queen and 7 upward 
diagonals are empty. 
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(d) Similarly we conclude that 8 dewnward diagonals contain precisely 
one queen and 7 are empty. 

(e) Given any non-empty configuration of queens such that no two of them 
can take each other, removal of any one of these queens will result in a 
configuration sharing that property. 

Now the last property is very important. (To be quite honest: here I feel 
unable to buffer the shock of invention !) In our earlier terminology it tells 
us something about any non-empty configuration from set B1. If we start 
with a solution (which is an 8-queen configuration from set B1) and take 
away one queen we get a 7-queen configuration from set B1; taking away a 
next queen will leave again a configuration from set B1 and we can repeat 
this process until the chessboard is empty. We could have taken a motion 
picture of this process: playing it back backwards it would show how, 
starting from an empty board, via configurations from set B1 that solution 
can be built up by adding one queen at a time. (Whether the trick of the 
motion picture played backwards is of any assistance for my readers is not 
for me to judge; I only mention it because I know that such devices help me.) 
When making the picture, any solution could be reduced to the e~pty  board 
in many ways, in exactly the same number of waysmwhile playifig it back- 
wardsmeach solution can be built up. Can we exploit this freedom? We have 
rejected set B1 because it is too large, but maybe we can find a suitable 
subset of it, such that each non-empty configuration of the subset is a 
one-queen extension of only one other configuration of the subset. The 
"extension property" suggests that we are willing to consider configurations 
with less than 8 queens on the board and that we would like to form new 
configurations by adding a queen to an existing configuration--a relatively 
simple operation presumably. Well, this draws our attention immediately 
to the generation of the elements of the (still mysterious) set B. For instance, 
in what order? And this again raises a question to which, as yet, we have not 
paid the slightest attention: in what order are we to generate the solutions, 
i.e. the elements of set A ? Can we make a reasonable suggestion in the hope 
of deriving a clue from it? (In my experience such a question about order is 
usually very illuminating. It is not only that we have to make a sequential 
program that by definition will generate the solutions in some order, so that 
the decision about the order will have to be taken at some stage of the game. 
The decision about the order usually provides the clue to the proof that the 
program will generate all solutions and each solution only once.) 

Prior to that we should ask ourselves: how do we characterise solutions 
once we have them? To characterise a solution we must give the positions 
of 8 queens. The queens themselves are unordered, but the rows and the 
columns are not: we may assume them to be numbered from 0 through 7. 
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Thanks to property (a) which tells us that each row contains precisely one 
queen, we can order the queens according to the number of the row they 
occupy. Then each configuration of 8 queens can be given by the value of the 
integer array x [0:7], where 

x[i] = the number of the column occupied by the queen in the ith row. 

Each solution is then a "8-digit word" (x [0] . . . x [7 ] )  and the only sensible 
order in which to generate these words that I can think of is the alphabetical 
order. 

Note. As a consequence we open the way to algorithms in which rows and 
columns are treated differently, while the original problem was symmetrical 
in rows and columns! To consider asymmetric algorithms is precisely what 
the above considerations have taught us! 

Returning to the alphabetical order: now we are approaching familiar 
ground. If the elements of set A are to be generated in alphabetical order 
and they have to be generated by selection from a larger set B, then the 
standard technique is to generate the elements of set B in alphabetical order 
as well and to produce the elements of the subset in the order in which they 
occur in set B. 

First we have to generate all solutions with x[0] = 0 (if any), then those 
with x[0] = 1 (if any) etc.; of the solutions with x[0] fixed, those with 
x[1] = 0 (if any) have to be generated first, followed by those with x[1] = 1 
(if any) etc. In other words: the queen of row 0 is placed in column 0--say 
the square in the bottom left corner--and remains there until all elements 
of A (and B) with queen 0 in that position have been generated and only 
then is she moved one square to the right to the next column. For each 
position of queen 0, queen 1 will walk from left to right in row 1--skipping 
the squares that are covered by queen 0--for each combined position of the 
first two queens, queen 2 walks along row 2 from left to right, skipping all 
squares covered by the preceding queens, etc. 

But now we have found set B! It is indeed a subset of B1, set B consists of 
all configurations with one queen in each of the first N rows, such that no 
two queens can take each other. 

The criterion deciding whether an element of B belongs to A as well is 
that N = 8. 

Having established our choice for set B, we find ourselves faced with the 
task of generating its elements in alphabetical order. We could try to do this 
via an operator "GENERATE NEXT ELEMENT OF B" with a program 
of the form 
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INITIALISE EMPTY BOARD; 

repeat GENERATE NEXT ELEMENT OF B; 

if N = 8 then PRINT C O N F I G U R A T I O N  

unt i l  B EXHAUSTED 

(Here we have used the fact that the empty board belongs to B, but not to A, 
and is not B's only element. We have made no assumptions about the 
existence of solutions.) 

But for two reasons a program of the above structure is less attractive. 
Firstly, we don't  have a ready-made criterion to recognise the last element 
of B when we meet it and in all probability we have to generalise the operator 
" G E N E R A T E  NEXT ELEMENT OF B" in such a way that it will produce 
the indication "B EXHAUSTED"  when it is applied to the last " true" 
element of B. Secondly, it is not too obvious how to make the operator 
" G E N E R A T E  NEXT ELEMENT OF B":  the number of queens on the 
board may remain constant, it may decrease and it may increase. 

So that is not too attractive. What can we do about it? As long as we 
regard the sequence of configurations of set B as a single, monotonous 
sequence, not subdivided into a succession of subsequences, the corresponding 
program structure will be a single loop as in the program just sketched. 
If we are looking for an alternative program structure, we must therefore 
ask ourselves "How can we group the sequence of configurations from set B 
into a succession of subsequences?". 

Realising that the sequence of configurations from set B have to be 
generated in alphabetical order and thinking about the main subdivision in 
a dictionary~viz, by first letter--the first grouping is obvious: by position 
of queen 0. 

Generating all elements of set B ~ f o r  the moment we forget about the 
printing of those configurations that belong to set A as well--then presents 
itself as 

INITIALISE EMPTY BOARD; 

h ' = 0 ;  

repeat SET QUEEN ON SQUARE[0,h];  

GENERATE ALL CONFIGURATIONS WITH QUEEN 0 

FIXED; 

REMOVE QUEEN FROM SQUARE[0,h];  

h : = h +  1 

unt i l  h = 8 . 

i 
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But now the question repeats itself: how do we group all configurations 
with queen 0 fixed ? We have already given the answer" in order of increasing 
column number of queen I, i.e. 

h l : =  0; 

repeat if SQUAREE1, hl] FREE d o  

begin SET QUEEN ON SQUAREEI,hl];  

GENERATE ALL CONFIGURATIONS WITH FIRST 

2 QUEENS FIXED; 

REMOVE QUEEN FROM SQUARE[1,hl]  

end; 

h i : =  hl + 1 

u n t i l  h l  = 8 . 

For "GENERATE ALL CONFIGURATIONS WITH FIRST2 QUEENS 
FIXED" we co tJld write a similar piece of program and so on; inserting 
them inside each other would result in a correct program with eight nested 
loops, but they would all be very, very similar. To do so has two disadvan- 
tages 

(1) it takes a cumbersome amount of writing 

(2) it gives a program solving the problem for a chessboard of 8*8 squares, 
but to solve the same puzzle for a board of, say, 10"10 squares would require 
a new, still longer program. 

We are looking for a way in which all the loops can be executed under 
control of the same program text. Can we make the text of the loops 
identical? Can we exploit their identity? 

Well, to start with, we observe that the outermost and the innermost loops 
are exceptional. 

The outermost loop is exceptional in the sense that it does not test whether 
squareE0,h] is free because we know it is free. But because we know it is 
free, there is no harm in inserting the conditional clause 

if SQUAREE0,h] FREE do 

and this gives the outermost loop the same pattern as the next six loops. 
The innermost loop is exceptional in the sense that as soon as 8 queens 

have been placed on the board, there is no point in generating all configura- 
tions with those queens fixed, because we have a full board. Instead the 
configuration should be printed, because we have found an element of set B 
that is also an element of set A. We can map the innermost cycle and the 
embracing seven upon each other by replacing the line "GENERATE"  by 
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if BOARD FULL then PRINT C O N F I G U R A T I O N  

else GENERATE ALL CONFIGURATIONS EXTENDING THE 

C U R R E N T  ONE 

For this purpose we introduce a global variable, "n" say, counting the 
number of queens currently on the board. The test "BOARD FULL"  
becomes "n = 8" and the operations on squares can then have "n" as first 
subscript. 

By now the only difference between the eight cycles is that each has "its 
private h". By the time that we have reached this stage, we can give an 
affirmative answer to the question whether we can exploit the identity of 
the loops. The sequencing through the eight nested loops can be evoked 
with the aid of a recursive procedure, "generate" say, which describes the 
cycle once. Using it, the program itself collapses into 

INITIALISE EMPTY BOARD; n: = 0; 

generate 

while "generate" is recursively defined as follows: 

procedure generate; 

begin integer h; 

h : = O ;  

repeat if SQUARE[n,h] FREE do 

begin SET QUEEN ON SQUARE[n,h];  n : =  n + l;  

if n = 8 then PRINT C O N F I G U R A T I O N  

else generate; 

n : =  n - l ;  REMOVE QUEEN FROM SQUARE[n,h] 
end; 

h : = h +  1 

until h = 8 

end 

Each activation of "generate" will introduce its private local variable h, 
thus catering for h, hi, . . .  , h8 that we would need when writing eight 
nested loops. 

Our program--although correct to this level of detail--is not yet complete, 
i.e. it has not been refined up to the standard degree of detail that is required 
by our programming language. In our next refinement we should decide 
upon the conventions according to which we represent the configurations 
on the board. We have already decided more or less that we shall use the 

integer array x[0:73 
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giving in order the column numbers occupied by the queens, and also that 

integer n 

should be used to represent the number of queens on the board. More 
precisely 

n = the number of queens on the board 

x[i] for 0 ~< i < n = the number of the column occupied by the queen in 
the ith row. 

The array x and the scalar n are together sufficient to fix any configuration 
of the set B and those will be the only ones on the chessboard. As a result 
we have no logical need for more variables; yet we shall introduce a few 
more, because from a practical point of view we can make good use of them. 
The problem is that with only the above material the (frequent) analysis 
whether a given square in the next free row is uncovered is rather painful 
and time-consuming. It is here that we look for the standard technique as 
described in the section "On trading storage space for computation speed" 
(see page 42). The role of the stored argument is here played by the 
configuration of queens on the board, but this value does not change wildly-- 
oh no, the only thing we do is to add or remove a queen. And we are 
looking for additional tables (whose contents are a function of the current 
configuration) such that they will assist us in deciding whether a square is 
free, and also such that they can be updated easily when a queen is added 
to or removed from a configuration. 

How? Well, we might think of a boolean array of 8*8, indicating for each 
square whether it is free or not. If we do this for the full board, adding a 
queen might imply dealing with 28 squares. Removing a queen, however, is 
then a painful process, because it does not follow that all squares no longer 
covered by her are indeed free: they might be covered by one or more of 
the other queens that remain in the configuration. There is a remedy (again 
standard) for this, viz. associating with each square not a boolean variable, 
but an integer counter, counting the number of queens covering the square. 
Adding a queen then means increasing up to 28 counters by 1, removing a 
queen means decreasing them by 1 and a square is free when its associated 
counter equals zero. We could do it that way, but the question is whether 
this is not overdoing it: 28 adjustments is indeed quite a heavy overhead on 
setting or removing a queen. 

Each square in the freedom of which we are interested covers a row (which 
is free by definition, so we need not bother about that), covers one of the 
8 columns (which must still be empty), covers one of the 15 upward diagonals 
(which must still be empty) and one of the 15 downward diagonals (which 
must still be empty). This suggests that we should keep track of 
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(1) the columns that are free 

(2) the upward diagonals that are free 

(3) the downward diagonals that are free. 

As each column or diagonal is covered only once we do not need a counter 
for each, a boolean variable is sufficient. The columns are readily identified 
by their column number and for the columns we introduce 

boolean array co1[0:7] 

where "col[i]" means that the ith column is still free. 
How do we identify the diagonals? Well, along an upward diagonal the 

difference between row number and column number is constant; along a 
downward diagonal their sum is constant. As a result, difference and sum 
respectively are the easiest index by which to distinguish the diagonals and 
we introduce therefore 

boolean array u p [ -  7: + 7], down[0:l 4] 

to keep track of which diagonals are flee. 

The question whether square[n,h] is free becomes 

col[hi and u p [ n -  h] and down[n + h] , 

setting and removing a queen both imply the adjustment of three booleans, 
one in each array. 

In the final program the variable "k" is introduced for general counting 
purposes, statements and expressions are labeled (in capital letters). Note 
that we have merged two levels of description: what were statements and 
functions on the upper level, now appear as explanatory labels. 

With the final program we come to the end of the last section. We have 
attempted to show the pattern of reasoning by which one could discover 
backtracking as a technique, and also the pattern of reasoning by which 
one could discover a recursive procedure describing it. The most important 
moral of this section is perhaps that all that analysis and synthesis could be 
carried out before we had decided how (and how redundantly) a configuration 
would be represented inside the machine. It is true that such considerations 
only bear fruit when eventually a convenient representation for configura- 
tions can be found. Yet the mental isolation of a level of abstraction in which 
we allow ourselves not to bother about it seems crucial. 

Finally, I would like to thank the reader that has followed me up till here 
for his patience. 
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