
I. Notes on Structured Programming

EDSGER W. DIJKSTRA

1. To MY READER

These notes have the status of "Letters written to myself": I wrote them down
because, without doing so, I found myself repeating the same arguments
over and over again. When reading what I had written, I was not always too
satisfied.

For one thing, I felt that they suffered from a marked verbosity. Yet I do
not try to condense them (now), firstly because that would introduce another
delay and I would like to "think on", secondly because earlier experiences
have made me afraid of being misunderstood: many a programmer tends to
see his (sometimes rather specific) difficulties as the core of the subject and
as a result there are widely divergent opinions as to what programming is
really about.

I hope that, despite its defects, you will enjoy at least parts of it. If these
notes prove to be a source of inspiration or to give you a new appreciation
of the programmer's trade, some of my goals will have been reached.

Prior to their publication in book form, the "Notes on Structured Pro-
gramming" have been distributed privately. The interest then shown in
them, for which I would like to express my gratitude here, has been one of
the main incentives to supplement them with some additional material and
to make them available to a wider public. In particular I would like to thank
Bob Floyd, Ralph London and Mike Woodger for their encouraging
comments and Peter Naur for the criticism he expressed. Finally I would
like to express my gratitude to Mrs. E. L. Dijkstra-Tucker for her kind
assistance in my struggles with the English language.

2. ON OUR INABILITY TO Do MUCH

I am faced with a basic problem of presentation. What I am really concerned
about is the composition of large programs, the text of which may be, say,
of the same size as the whole text of this chapter. Also I have to include

1

E. W. DIJKSTRA

examples to illustrate the various techniques. For practical reasons, the
demonstration programs must be small, many times smaller than the "life-
size programs" I have in mind. My basic problem is that precisely this
difference in scale is one of the major sources of our difficulties in pro-
grammingt

It would be very nice if I could illustrate the various techniques with
small demonstration programs and could conclude with " . . . and when faced
with a program a thousand times as large, you compose it in the same way."
This common educational device, however, would be self-defeating as one of
my central themes will be that any two things that differ in some respect by a
factor of already a hundred or more, are utterly incomparable.

History has shown that this truth is very hard to believe. Apparently we are
too much trained to disregard differences in scale, to treat them as "gradual
differences that are not essential". We tell ourselves that what we can do once,
we can also do twice and by induction we fooI ourselves into believing that we
can do it as many times as needed, but this is just not truer A factor of a
thousand is already far beyond our powers of imagination t

Let me give you two examples to rub this in. A one-year old child will
crawl on all fours with a speed of, say, one mile per hour. But a speed of a
thousand miles per hour is that of a supersonic jet. Considered as objects
with moving ability the child and the jet are incomparable, for whatever one
can do the other cannot and vice versa. Also: one can close one's eyes and
imagine how it feels to be standing in an open place, a prairie or a sea shore,
while far away a big, reinless horse is approaching at a gallop, one can "see"
it approaching and passing. To do the same with a phalanx of a thousand of
these big beasts is mentally impossible" your heart would miss a number of
beats by pure panic, if you could!

To complicate matters still further, problems of size do not only cause me
problems of presentation, but they lie at the heart of the subject: widespread
underestimation of the specific difficulties of size seems one of the major
underlying causes of the current software failure. To all this I can see only
one answer, viz. to treat problems of size as explicitly as possible. Hence the
title of this section.

To start with, we have the "size" of the computation, i.e. the amount of
information and the number of operations involved in it. It is essential that
this size is large, for if it were really small, it would be easier not to use the
computer at all and to do it by hand. The automatic computer owes its right
to exist, its usefulness, precisely to its ability to perform large computations
where we humans cannot. We want the computer to do what we could never
do ourselves and the power of present-day machinery is such that even small
computations are by their very size already far beyond the powers of our
unaided imagination.

NOTES ON STRUCTURED PROGRAMMING 3

Yet we must organise the computations in such a way that our limited
powers are sufficient to guarantee that the computation will establish the
desired effect. This organising includes the composition of the program and
here we are faced with the next problem of size, viz. the length of the program
text, and we should give this problem also explicit recognition. We should
remain aware of the fact that the extent to which we can read or write a text
is very much dependent on its size. In my country the entries in the telephone
directory are grouped by town or village and within each such group the
subscribers are listed by name in alphabetical order. I myself live in a small
village and given a telephone number I have only to scan a few columns to
find out to whom the telephone number belongs, but to do the same in a large
city would be a major data processing task!

It is in the same mood that I should like to draw the reader's attention to
the fact that "clarity" has pronounced quantitative aspects, a fact many
mathematicians, curiously enough, seem to be unaware of. A theorem stating
the validity of a conclusion when ten pages full of conditions are satisfied is
hardly a convenient tool, as all conditions have to be verified whenever the
theorem is appealed to. In Euclidean geometry, Pythagoras' Theorem holds
for any three points A, B and C such that through A and C a straight line
can be drawn orthogonal to a straight line through B and C. How many
mathematicians appreciate that the theorem remains applicable when some or
all of the points A, B and C coincide? Yet this seems largely responsible for
the convenience with which Pythagoras' Theorem can be used.

Summarizing: as a slow-witted human being I have a very small head and I
had better learn to live with it and to respect my limitations and give them full
credit, rather than to try to ignore them, for the latter vain effort will be
punished by failure.

3. ON THE RELIABILITY OF MECHANISMS

Being a programmer by trade, programs are what I am talking about and the
true subject of this section really is the reliability of programs. That, never-
theless, I have mentioned "mechanisms" in its title is because I regard
programs as specific instances of mechanisms, and that I wanted to express,
at least once, my strong feeling that many of my considerations concerning
software are, mutatis mutandis, just as relevant for hardware design.

Present-day computers are amazing pieces of equipment, but most amazing
of all are the uncertain grounds on account of which we attach any validity to
their output. It starts already with our belief that the hardware functions
properly.

Let us restrict, for a moment, our attention to the hardware and let us
wonder to what extent one can convince oneself of its being properly con-

4 E .W. DIJKSTRA

structed. Some years ago a machine was installed on the premises of my
University; in its documentation it was stated that it contained, among many
other things, circuitry for the fixed-point multiplication of two 27-bit integers.
A legitimate question seems to be" "Is this multiplier correct, is it performing
according to the specifications?".

The naive answer to this is: "Well, the number of different multiplications
this multiplier is claimed to perform correctly is finite, viz. 25., so let us
try them all." But, reasonable as this answer may seem, it is not, for although
a single multiplication took only some tens of microseconds, the total time
needed for this finite set of multiplications would add up to more than 10,000
years! We must conclude that exhaustive testing, even of a single component
such as a multiplier, is entirely out of the question. (Testing a complete
computer on the same basis would imply the established correct processing
of all possible programs !)

A first consequence of the 10,000 years is that during its life-time the
multiplier will be asked to perform only a negligible fraction of the vast
number of all possible multiplications it could do: practically none of them!
Funnily enough, we still require that it should do any multiplication correctly
when ordered to do so. The reason underlying this fantastic quality require-
ment is that we do not know in advance, which are the negligibly few
multiplications it will be asked to perform. In our reasoning about our
programs we talk about "the product" and have abstracted from the specific
values of the factors: we do not know them, we do not wish to know them,
it is not our business to know them, it is our business not to know them!
Our wish to think in terms of the concept "the product", abstracted from the
specific instances occurring in a computation is granted, but the price paid
for this is precisely the reliability requirement that any multiplication of the
vast set will be performed correctly. So much for the justification of our
desire for a correct multiplier.

But how is the correctness established in a convincing manner? As long as
the multiplier is considered as a black box, the only thing we can do is "testing
by sampling", i.e. offering to the multiplier a feasible amount of factor pairs
and checking the result. But in view of the 10,000 years, it is clear that we can
only test a negligible fraction of the possible multiplications. Whole classes
of in some sense "critical" multiplications may remain untested and in view
of the reliabillty justly desired, our quality control is still most unsatisfactory.
Therefore it is not done that way.

The straightforward conclusion is the following: a convincing demon-
stration of correctness being impossible as long as the mechanism is regarded
as a black box, our only hope lies in not regarding the mechanism as a black
box. I shall call this "taking the structure of the mechanism into account".

NOTES ON STRUCTURED PROGRAMMING 5

From now onwards the type of mechanisms we are going to deal with are
programs. (In many respects, programs are mechanisms much easier to deal
with than circuitry, which is really an analogue device and subject to wear and
tear.) And also with programs it is fairly hopeless to establish the correctness
beyond even the mildest doubt by testing, without taking their structure into
account. In other words, we remark that the extent to which the program
correctness can be established is not purely a function of the program's
external specifications and behaviour but depends critically upon its internal
structure.

Recalling that our true concern is with really large programs, we observe as
an aside that the size itself requires a high confidence level for the individual
program components. If the chance of correctness of an individual component
equals p, the chance of correctness of a whole program, composed of N such
components, is something like

p=pN.

As N will be very large, p should be very, very close to 1 if we desire P to
differ significantly from zero!

When we now take the position that it is not only the programmer's task to
produce a correct program but also to demonstrate its correctness in a con-
vincing manner, then the above remarks have a profound influence on the
programmer's activity: the object he has to produce must be usefully
structured.

The remaining part of this monograph will mainly be an exploration of
what program structure can be used to good advantage. In what follows it
will become apparent that program correctness is not my only concern,
program adaptability or manageability will be another. This stress on program
manageability is my deliberate choice, a choice that, therefore, I should like
to justify.

While in the past the growth in power of the generally available equipment
has mitigatedthe urgency of the efficiency requirements, this very same growth
has created its new difficulties. Once one has a powerful machine at one's
disposal one tries to use it and the size of the problems one tackles adjusts
itself to the scope of the equipment: no one thinks about programming an
algorithm that would take twenty years to execute. With processing power
increased by a factor of a thousand over the last ten to fifteen years, Man has
become considerably more ambitious in selecting problems that now should
be "technically feasible". Size, complexity and sophistication of programs
one should like to make have exploded and over the past years it has become
patently clear that on the whole our programming ability has not kept pace
with these exploding demands made on it.

6 E. W. DIJKSTRA

The power of available equipment will continue to grow" we can expect
manufacturers to develop still faster machines and even without that develop-
ment we shall witness that the type of machine that is presently considered as
exceptionally fast will become more and more common. The things we should
like to do with these machines will grow in proportion and it is on this
extrapolation that I have formed my picture of the programmer's task.

My conclusion is that it is becoming most urgent to stop to consider
programming primarily as the minimization of a cost/performance ratio. We
should recognise that already now programming is much more an intellectual
challenge: the art of programming is the art of organising complexity, of
mastering multitude and avoiding its bastard chaos as effectively as possible.

My refusal to regard efficiency considerations as the programmer's prime
concern is not meant to imply that I disregard them. On the contrary,
efficiency considerations are recognised as one of the main incentives to
modifying a logically correct program. My point, however, is that we can
only afford to optimise (whatever that may be) provided that the program
remains sufficiently manageable.

Let me end this section with a final aside on the significance of computers.
Computers are extremely flexible and powerful tools and many feel that their
application is changing the face of the earth. I would venture the opinion that
as long as we regard them primarily as tools, we might grossly underestimate
their significance. Their influence as tools might turn out to be but a ripple
on the surface of our culture, whereas I expect them to have a much more
profound influence in their capacity of intellectual challenge!

Corollary of the first part of this section:
Program testing can be used to show the presence of bugs, but never to

show their absence!

4. ON OUR MENTAL AIDS

In the previous section we have stated that the programmer's duty is to make
his product "usefully structured" and we mentioned the program structure in
connection with a convincing demonstration of the correctness of the
program.

But how do we convince? And how do we convince ourselves? What are
the typical patterns of thought enabling ourselves to understand? It is to a
broad survey of such questions that the current section is devoted. It is written
with my sincerest apologies to the professional psychologist, because it will
be amateurishly superficial. Yet I hope (and trust) that it will be sufficient to
give us a yardstick by which to measure the usefulness of a proposed
structuring.

NOTES ON STRUCTURED PROGRAMMING 7

Among the mental aids available to understand a program (or a proof of its
correctness) there are three that I should like to mention explicitly:

(1) Enumeration

(2) Mathematical induction

(3) Abstraction.

4.1. ON ENUMERATION

I regard as an appeal to enumeration the effort to verify a property of the
computations that can be evoked by an enumerated set of statements per-
formed in sequence, including conditional clauses distinguishing between two
or more cases. Let me give a simple example of what I call "enumerative
reasoning".

It is asked to establish that the successive execution of the following two
statements

"dd: = dd/2;

ifdd~< r d o r : = r - d d "

operating on the variables " r " and "dd" leaves the relations

0 ~< r < dd (1)

invariant. One just "follows" the little piece of program assuming that (1) is
satisfied to start with. After the execution of the first statement, which halves
the value of dd, but leaves r unchanged, the relations

0 ~< r < 2*dd (2)

will hold. Now we distinguish two mutually exclusive cases.

(1) dd ~< r. Together with (2) this leads to the relations

dd ~< r < 2*dd; (3)

In this case the statement following do wilt be executed, ordering a decrease
of r by dd, so that from (3) it follows that eventually

O~<r < d d ,

i.e. (1) will be satisfied.

(2) non dd ~< r (i.e. d d > r). In this case the statement following do will be
skipped and therefore also r has its final value. In this case " d d > r" together
with (2), which is valid after the execution of the first statement leads
immediately to

O ~< r < dd

so that also in the second case (1) will be satisfied.

Thus we have completed our proof of the invariance of relations (1), we
have also completed our example of enumerative reasoning, conditional
clauses included.

8 E. W. DIJKSTRA

4.2. ON MATHEMATICAL INDUCTION

I have mentioned mathematical induction explicitly because it is the only
pattern of reasoning that I am aware of that eventually enables us to cope
with loops (such as can be expressed by repetition clauses) and recursive
procedures. I should like to give an example.

Let us consider the sequence of values

do, dl, d2, d 3 , (1)
given by

f o r i = 0 d i = D (2a)

for i > 0 d~ = f (d~_ 1) (2b)

where D is a given value and f a given (computable) function. It is asked to
make the value of the variable "d" equal to the first value dk in the sequence
that satisfies a given (computable) condition "prop '. It is given that such a
value exists for finite k. A more formal definition of the requirement is to
establish the relation

d = dk (3)

where k is given by the (truth of the) expressions

prop (dk) (4)

and non prop (d3 for all i satisfying 0 ~< i < k (5).

We now consider the following program part:

"d: = D;

while non prop (d) do d: = f (d) " (6)

in which the first line represents the initialisation and the second one the loop,
controlled by the (hopefully self-explanatory) repetition clause while. . .do.
(In terms of the conditional clause i f . . . do, used in our previous example, a
more formal definition of the semantics of the repetition clause is by stating
that

"while B do S"

is semantically equivalent with

"if B do

begin S; while B do S end"

expressing that "non B" is the necessary and sufficient condition for the
repetition to terminate.)

Calling in the construction "while B do S" the statement S "the repeated
statement" we shall prove that in program (6):

after the nth execution of the repeated statement will hold (for n >~ 0)

d = d~ (7a)

NOTES ON STRUCTURED PROGRAMMING 9

and n o n prop (di) for all i satisfying 0 ~< i < n. (7b)

The above statement holds for n = 0 (by enumerative reasoning); we have
to prove (by enumerative reasoning) that when it holds for n = N (N ~ 0),
it will also hold for n = N + 1.

After the Nth execution of the repeated statement relations (7a) and (7b)
are satisfied for n = N. For the N + 1 st execution to take place, the necessary
and sufficient condition is the truth of

n o n prop (d)

which, thanks to (7a) for n = N (i.e. d = dN) means

n o n prop (dN)

leading to condition (7b) being satisfied for n = N + 1. Furthermore,
d = dN and (2b) leads to

f (d) = dN+ 1

so that the net effect of the N + 1st execution of the repeated statement

"d: = f (d) "

established the relation

d = dN+l

i.e. relation (7a) for N = N + 1 and thus the induction step (7) has been
proved.

Now we shall show that the repetition terminates after the kth execution
of the repeated statement. The nth execution cannot take place for n > k
for (on account of 7b) this would imply

n o n prop (dk)

thereby violating (4). When the repetition terminates after the nth execution
of the repeated statement, the necessary and sufficient condition for termina-
tion, viz.

non (non prop (d))

becomes, thanks to (7a)

prop (dn). (8)

This excludes termination for n < k, as this would violate (5). As a result the
repetition will terminate with n = k, so that (3) follows from (7a), (4) follows
from (8) and (5) follows from (Tb). Which terminates our proof.

Before turning our attention away from this example illustrating the use of
mathematical induction as a pattern of reasoning, I should like to add some
remarks, because I have the uneasy feeling that by now some of my readers
(in particular experienced and competent programmers) will be terribly
irritated, viz. those readers for whom program (6) is so obviously correct
that they wonder what all the fuss is about: "Why his pompous restatement

10 E. W. DIJKSTRA

of the problem, as in (3), (4) and (5), because anyone knows what is meant
by the first value in the sequence, satisfying a condition? Certainly he does
not expect us, who have work to do, to supply such lengthy proofs, with all
the mathematical dressing, whenever we use such a simple loop as that?"
Etc.

To tell the honest truth: the pomp and length of the above proof infuriate
me as well! But at present I cannot do much better if I really try to prove the
correctness of this program. But it sometimes fills me with the same kind of
anger as years ago the crazy proofs of the first simple theorems in plane
geometry did, proving things of the same degree of "obviousness" as Euclid's
axioms themselves.

Of course I would not dare to suggest (at least at present!) that it is the
programmer's duty to supply such a proof whenever he writes a simple loop
in his program. If so, he could never write a program of any size at all! It
would be as impractical as reducing each proof in plane geometry explicitly
and in extenso to Euclid's axioms. (Cf. Section "On our inability to do
much.")

My moral is threefold. Firstly, when a programmer considers a construc-
tion like (6) as obviously correct, he can do so because he is familiar with the
construction. I prefer to regard his behaviour as an unconscious appeal to a
theorem he knows, although perhaps he has never bothered to formulate it;
and once in his life he has convinced himself of its truth, although he has
probably forgotten in which way he did it and although the way was
(probably) unfit for print. But we could call our assertions about program
(6), say, "The Linear Search Theorem" and knowing such a name it is much
easier (and more natural) to appeal to it consciously.

Secondly, to the best of my knowledge, there is no set of theorems of the
type illustrated above, whose usefulness has been generally accepted. But we
should not be amazed about that, for the absence of such a set of theorems is a
direct consequence of the fact that the type of object~i.e, p rograms~has not
settled down. The kind of object the programmer is dealing with, viz.
programs, is much less well-established than the kind of object that is dealt
with in plane geometry. In the meantime the intuitively competent programmer
is probably the one who confines himself, whenever acceptable, to program
structures with which he is very familiar, while becoming very alert and
careful whenever he constructs something unusual (for him). For an estab-
lished style of programming, however, it might be a useful activity to look
for a body of theorems pertinent to such programs.

Thirdly, the length of the proof we needed in our last example is a warning
that should not be ignored. There is of course the possibility that a better
mathematician will do a much shorter and more elegant job than I have done.
Personally I am inclined to conclude from this length that programming is

NOTES ON STRUCTURED PROGRAMMING 11

more difficult than is commonly assumed: let us be honestly humble and
interpret the length of the proof as an urgent advice to restrict ourselves to
simple structures whenever possible and to avoid in all intellectual modesty
"clever constructions" like the plague.

4.3. ON ABSTRACTION

At this stage I find it hard to be very explicit about the role of abstraction,
partly because it permeates the whole subject. Consider an algorithm and all
possible computations it can evoke: starting from the computations the
algorithm is what remains when one abstracts from the specific values
manipulated this time. The concept of "a variable" represents an abstraction
from its current value. It has been remarked to me (to my great regret. I
cannot remember by whom and so I am unable to give credit where it seems
due) that once a person has understood the way in which variables are used in
programming, he has understood the quintessence of programming. We can
find a confirmation for this remark when we return to our use of mathematical
induction with regard to the repetition: on the one hand it is by abstraction
that the concepts are introduced in terms of which the induction step can be
formulated; on the other hand it is the repetition that really calls for the
concept of "a variable". (Without repetition one can restrict oneself to
"quantities" the value of which has to be defined as most once but never has
to be redefined as in the case of a variable.)

There is also an abstraction involved in naming an operation and using it
on account of "what it does" while completely disregarding "how it works".
(In the same way one should state that a programming manual describes an
abstract machine" the specific piece of hardware delivered by the manu-
facturer is nothing but a--usually imperfect !--mechanical model of this
abstract machine.) There is a strong analogy between using a named operation
in a program regardless of "how it works" and using a theorem regardless
of how it has been proved. Even if its proof is highly intricate, it may be a
very convenient theorem to use!

Here, again, I refer to our inability to do much. Enumerative reasoning is
all right as far as it goes, but as we are rather slow-witted it does not go very
far. Enumerative reasoning is only an adequate mental tool under the severe
boundary condition that we use it only very moderately. We should appreciate
abstraction as our main mental technique to reduce the demands made upon
enumerative reasoning.

(Here Mike Woodger, National Physical Laboratory, Teddington, England,
made the following remark, which I insert in gratitude: "There is a parallel
analogy between the unanalysed terms in which an axiom or theorem is
expressed and the unanalysed operands upon which a named operation is
expected to act.")

12 E. W. DIJKSTRA

5. AN EXAMPLE OF A CORRECTNESS PROOF

Let us consider the following program section, where the integer constants
a and d satisfy the relations

a ~> 0 a n d d > 0.

"integer r, dd;

r ' = a; dd: = d;

while dd ~< r do d d : = 2 * d d ;

while dd -~ d do
begin dd: = dd/2;

i f d d ~ < r d o r : = r - dd

end".
To apply the Linear Search Theorem (see Section "On our mental aids",

subsection "On mathematical induction") we consider the sequence of values
given by

f o r i = 0 d d ~ = d

for i > 0 ddi = 2*ddi_ 1

from which ddn = d*2" (1)

can be derived by normal mathematical techniques, which also tell us that
(because d > 0) for finite r

ddk > r

will hold for some finite k, thus ensuring that the first repetition terminates
with

dd = d*2 k

Solving the relation

d~ = 2*d i - 1

for d~_ 1 gives

d i - 1 = dd2

and the Linear Search Theorem then tells us, that the second repetition will
also terminate. (As a matter of fact the second repeated statement will be
executed exactly the same number of times as the first one.)

At the termination of the first repetition,

d d = ddk

and therefore,

0 ~< r < d d (2)

holds. As shown earlier (Section "On our mental aids.", subsection "On
enumeration") the repeated statement of the second clause leaves this relation

NOTES ON STRUCTURED PROGRAMMING 13

invariant. After termination (on account of "while d d - ¢ d do") we can
conclude

dd = d

which together with (2) gives

0 ~< r < d (3)

Furthermore we prove that after the initialisation

dd _= 0 mod (d) (4)

holds; this follows, for instance, from the fact that the possible values of dd

are (see (1))
d*2 i for O ~< i ~ . k .

Our next step is to verify, that after the initial assignment to r the relation

a ~ r mod (d) (5)
holds.

(1) It holds after the initial assignments.

(2) The repeated statement of the first clause ("dd: = 2*rid") maintains
the invariance of (5) and therefore the whole first repetition maintains the
validity of (5).

(3) The second repeated statement consists of two statements. The first
("rid: = dd/2") leaves (5) invariant, the second one also leaves (5) invariant for
either it leaves r untouched or it decreases r by the current value of dd, an
operation which on account of (4) also maintains the validity of (5). Therefore
the whole second repeated statement leaves (5) invariant and therefore the
whole repetition leaves (5) invariant. Combining (3) and (5), the final value
therefore satisfies

0 ~< r < d a n d a = _ r m o d (d)

i.e. r is the smallest non-negative remainder of the division of a by d.

R e m a r k 1. The program

"integer r, dd, q;

r: = a; dd: = d; q: = 0;

while dd <~ r do dd: = 2 * dd;

while d d # d do
begin dd: = dd/2; q: = 2 * q;

i fdd~<rdobeg inr := r - dd; q : = q + l e n d
end

assigns to q the value of the corresponding quotient. The proof can be
established by observing the invariance of the relation

a = q * d d + r .

(I owe this example to my colleague N. G. de Bruijn.)

14 E. W. DIJKSTRA

Remark 2. In the subsection "On mathematical induction." we have proved
the Linear Search Theorem. In the previous proof we have used another
theorem about repetitions (a theorem that, obviously, can only be proved by
mathematical induction, but the proof is so simple that we leave it as an
exercise to the reader), viz. that if prior to entry of a repetition a certain
relation P holds, whose truth is not destroyed by a single execution of the
repeated statement, then relation P will still hold after termination of the
repetition. This is a very useful theorem, often allowing us to bypass an
explicit appeal to mathematical induction. (We can state the theorem a little
more sharply; in the repetition

"while B do S"

one has to show that S is such that the truth of

P and B
prior to the execution of S implies the truth of

P

after its execution.)

Remark 3. As an exercise for the reader (for which acknowledgement is
due to James King, CMU, Pittsburgh, USA), prove that with integer A, B,
x, y and z and

A > 0 and B >t 0

after the execution of the program section

" x : = A ; y : = B ; z : = l ;

while y -¢ 0 do

begin if odd (y) do begin y: = y - 1; z: = z * x end;

y : = y/2; x : = x * x

end"

finally z = A s will hold.

The proof has to show that (in spite of "y: = y/2") all variables keep
integer values; the method shows the invariance of

x > 0 a n d y t > 0andAB = z * x y

6. ON THE VALIDITY OF PROOFS VERSUS THE VALIDITY OF
IMPLEMENTATIONS

In the previous section I have assumed "perfect arithmetic" and in my
experience the validity of such proofs often gets questioned by people who
argue that in practice one never h~is perfect arithmetic at ones disposal:
admissible integer values usually have an absolute upper bound, real numbers
are only represented to a finite accuracy etc. So what is the validity of such
proofs?

NOTES ON STRUCTURED PROGRAMMING 15

The answer to this question seems to be the following. If one proves the
correctness of a program assuming an idealised, perfect world, one should
not be amazed if something goes wrong when this ideal program gets executed
by an "imperfect" implementation. Obviously!Therefore, if we wish to prove
program correctness in a more realistic world, the thing to do is to acknow-
ledge right at the start that all operations appealed to in the program (in
particular all arithmetic operations) need not be perfect, provided we state--
rather axiomatically--the properties they have to satisfy for the proper
execution of the program, i.e. the properties on which the correctness proof
relies. (In the example of the previous section this requirement is simply
exact integer arithmetic in the range [0, 2a].)

When writing a program operating on real numbers with rounded opera-
tions, one must be aware of the assumptions one makes, such as

b > 0 i m p l i e s a + b f > a

a * b = b * a

- (a ' b) = (- a) * b

0 * x = 0

0 + x = x

l ' x = xetc. etc.

Very often the validity of such relations is essential to the logic of the
program. For the sake of compatibility, the programmer would be wise to be
as undemanding as possible, whereas a good implementation should satisfy
as many reasonable requirements as possible.

This is the place to confess one of my blunders. In implementing ALGOL 60
we decided that "x = y" would deliver the value true not only in the case of
exact equality, but also when the two values differed only in the least signifi-
cant digit represented, because otherwise it was so very improbable that the
value true would ever be computed. We were thinking of converging iterations
that could oscillate within rounding accuracy. While we had been generous
(with the best of intentions!) in regarding real numbers as equal, it quickly
turned out that the chosen operation was so weak as to be hardly of any use
at all. What it boiled down to was that the established truth of a = b and
b = c did not allow the programmer to conclude the truth of a = c. The
decision was quickly changed. It is because of that experience that I know
that the programmer can only use his tool by virtue of (a number of) its
properties; conversely, the programmer must be able to state which properties
he requires. (Usually programmers don't do so because, for lack of tradition
as to what properties can be taken for granted, this would require more
explicitness than is otherwise desirable. The proliferation of machines with

16 E. W . DIJKSTRA

lousy floating-point hardware~together with the misapprehension that the
automatic computer is primarily the tool of the numerical analyst~has done
much harm to the profession!)

7. ON UNDERSTANDING PROGRAMS

In my life I have seen many programming courses that were essentially like
the usual kind of driving lessons, in which one is taught how to handle a car
instead of how to use a car to reach one's destination.

My point is that a program is never a goal in itself; the purpose of a
program is to evoke computations and the purpose of the computations is to
establish a desired effect. Although the program is the final product made by
the programmer, the possible computations evoked by i t~ the "making" of
which is left to the machine!~are the true subject matter of his trade. For
instance, whenever a programmer states that his program is correct, he really
makes an assertion about the computations it may evoke.

The fact that the last stage of the total activity, viz. the transition from
the (static) program text to the (dynamic) computation, is essentially left to
the machine is an added complication. In a sense the making of a program is
therefore more difficult than the making of a mathematical theory: both
program and theory are structured, timeless objects. But while the mathe-
matical theory makes sense as it stands, the program only makes sense via its
execution.

In the remaining part of this section I shall restrict myself to programs
written for a sequential machine, and I shall explore some of the consequences
of our duty to use our understanding of a program to make assertions about
the ensuing computations. It is my (unproven) claim that the ease and
reliability with which we can do this depends critically upon the simplicity of
the relation between the two, in particular upon the nature of sequencing
control. In vague terms we may state the desirability that the structure of
the program text reflects the structure of the computation. Or, in other terms,
"What can we do to shorten the conceptual gap between the static program
text (spread out in "text space") and the corresponding computations
(evolving in time) ?"

It is the purpose of the computation to establish a certain desired effect.
When it starts at a discrete moment to it will be completed at a later discrete
moment ta and we assume that its effect can be described by comparing "the
state at to" with "the state at t~". If no intermediate states are taken into
consideration the effect is regarded as being established by a primitive action.

When we do take a number of intermediate states into consideration this
means that we have parsed the happening in time. We regard it as a sequential
computation, i.e. the time-succession of a number of subactions and we have

NOTES O N S T R U C T U R E D P R O G R A M M I N G 17

to convince ourselves that the cumulative effect of this time-successiQn of
subactions indeed equals the desired net effect of the total computation.

The simplest case is a parsing, a decomposition, into a fixed number of
subactions that can be enumerated. In flowchart form this can be represented
as follows.

[. . . . 2 ~ - - - - -- 1

I

I I 1 ,
I

I i ' ' I
!

t t I

!

' [1' l Sn I
I

51; S2; ; 5n

The validity of this decomposition has to be established by enumerative
reasoning. In this case, shortening of the conceptual gap between program
and computation can be achieved by requiring that a linear piece of program
text contains names or descriptions of the subactions in the order in which
they have to take place. In our earlier example (invariance of 0 ~< r < dd)

"dd: = dd/2;

i f dd ~ r do r: = r - dd"

this condition is satisfied. The primary decomposition of the computation is
into a time-succession of two actions; in the program text we recognise this
structure

"halve dd;

reduce r modulo dd".

We are considering all initial states satisfying 0 ~< r < dd and in all
computations then considered, the given parsing into two subactions is
applicable. So far, so good.

The program, however, is written under the assumption that "reduce r
modulo dd" is not a primitive action, while "decrease r by dd" is. Viewing all
possible happenings during "reduce r modulo dd" it then becomes relevant
to distinguish that in some cases "decrease r by dd" takes place, while in the
other cases r remains unchanged. By writing

"if dd ~< r do decrease r by dd"

18 E . W . DIJKSTRA

we have represented that at the given level of detail the action "reduce r
modulo rid" can take one of two mutually exclusive forms and we have also
given the criterion on account of which the choice between them is made. If
we regard "if dd ~ r do" as a conditional clause attached to "decrease r by
rid" it is natural that the conditional clause is placed in front of the conditioned
statement. (In this sense the alternative clause

"if condition then statement 1 else statement 2"

is "over-ordered" with respect to "statement 1" and "statement 2": they are
just two alternatives that cannot be expressed simultaneously on a linear
medium.)

The alternative clause has been generalised by C. A. R. Hoare whose
"case-of" construction provides a choice between more than two possibilities.
In flowchart form they can be represented as follows.

r "I r T
I I I

I

' 1 " 1 I

' L " L

, " '2 ' ' ?
I l
L ___.a L

if ? do 51 if 7 then Sl else 52

t
i I ~ II

I ~
I x\
I x

.. r " " " ' 7 ~ ' i

[~' 7 L _ ~ - I ~,

~ ~ ' , : / . c j - - f

NOTES ON STRUCTURED PROGRAMMING 19

These flowcharts share the property that they have a single entry at the top
and a single exit at the bottom: as indicated by the dotted block they can
again be interpreted (by disregarding what is inside the dotted lines) as a
single action in a sequential computation. To be a little bit more precise"
we are dealing with a great number of possible computations, primarily
decomposed into the same time-succession of subactions and it is only on
closer inspection--i.e, by looking inside the dotted block--that it is revealed
that over the collection of possible computations such a subaction may take
one of an enumerated set of distinguished forms.

The above is sufficient to consider a class of computations that are primarily
decomposed into the same set of enumerated subactions; they are insufficient
to consider a class of computations that are primarily decomposed into a
varying number of subactions (i.e. varying over the class of computations
considered). It is here that the usefulness of the repetition clauses becomes
apparent. We mention "while condition do statement" and "repeat statement
until condition" that may be represented in flowchart form as follows.

I l r
I I

I I

I_] ,
I ' ' I I

I I

5 I I
I i

] i i
.... I

I i

t
~t

?

while ? d_~ S repeat 5 until

These flowcharts also share the property of a single entry at the top and a
single exit at the bottom. They enable us to express that the action represented
by the dotted block is on closer inspection a time-succession of "a sufficient
number" of subactions of a certain type.

We have now seen three types of decomposition; we could call them
"concatenation", "selection" and "repetition" respectively. The first two are
understood by enumerative reasoning, the last one by mathematical induction.

The programs that can be written using the selection clauses and the
repetition clauses as only the means for sequencing control, permit straight-
forward translation into a programming language that is identical but for the

20 E. W. DIJKSTRA

fact that sequencing control has to be expressed by jumps to labelled points.
The converse is not true. Alternatively: restricting ourselves to the three
mentioned types of decomposition leads to flowcharts of a restricted topology
compared with the flowcharts one can make when arrows can be drawn from
any block leading into any other. Compared with that greater freedom, to
restrict oneself to the clauses presents itself as a sequencing discipline.

Why do I propose to adhere to this sequencing discipline ? The justification
for this decision can be presented in many ways and let me try a number of
them in the hope that at least one of them will appeal to my readers.

Eventually, one of our aims is to make such well-structured programs that
the intellectual effort (measured in some loose sense) needed to understand
them is proportional to program length (measured in some equally loose
sense). In particular we have to guard against an exploding appeal to enumera-
tive reasoning, a task that forces upon us some application of the old adage
"Divide and Rule", and that is the reason why we propose the step-wise
decompositions of the computations.

We can understand a decomposition by concatenation via enumerative
reasoning. (We can do so, provided that the number of subactions into which
the computation is primarily parsed, is sufficiently small and that the specifi-
cation of their net effect is sufficiently concise. I shall return to these require-
ments at a later stage, at present we assume the conditions met.) It is then
feasible to make assertions about the computations on account of the program
text, thanks to the triviality of the relation between the progress through the
computations and the progress through the program text. In particular: if on
closer inspection one of the subactions transpires to be controlled by a
selective clause or a repetition clause, this fact does not impose any burden
on the understandability of the primary decomposition, because there only
the subaction's net effect plays a role.

As a corollary" if on closer inspection a subaction is controlled by a
selective clause the specific path taken is always irrelevant at the primary level
(the only thing that matters is that the correct path has been taken). And also:
if on closer inspection a subaction is controlled by a repetitive clause, the
number of times the repeated statement has been executed is, as such,
irrelevant (the only thing that matters is that it has been repeated the correct
number of times).

We can also understand the selective clauses as such, viz. by enumerative
reasoning; we can also understand the repetition clause, viz. by mathematical
induction. For all three types of decomposition--and this seems to me a great
help--we know the appropriate pattern of reasoning.

There is a further benefit to be derived from the proposed sequencing
discipline. In understanding programs we establish relations. In our example
on enumerative reasoning we established that the program part

leaves the relation

NOTES ON STRUCTURED PROGRAMMING

"dd: = dd/2;

if dd <~ r do r : = r - d d "

21

O < . r < d d

invariant. Yet, even if we can ensure that these relations hold before execution
of the quoted program part, we cannot conclude that they always hold, viz.
not necessarily between the execution of the two quoted statements. In other
words: the validity of such relations is dependent on the progress of the
computation, and this seems typical for a sequential process.

Similarly, we attach meanings to variables: a variable may count the
number of times an event of a given type has occurred, say the number bf
lines that has been printed on the current page. Transition to the next page
will be followed immediately by a reset to zero, printing a line will be followed
immediately by an increase by 1. Again, just before resetting or increasing
this count, the interpretation "number of lines printed on the current page"
is non-valid. To assign such a meaning to a variable, again, can only be done
relative to the progress of the computation. This observation raises the follow-
ing question: "How do we characterise the progress of a computation?"

In short, we are looking for a co-ordinate system in terms of which the
discrete points of computation progress can be identified, and we want this
co-ordinate system to be independent of the variables operated upon under
program control: if we need values of such variables to describe progress of
the computation we are begging the question, for it is precisely in relation to
this progress that we want to interpret the meaning of these variables.

(A still more stringent reason not to rely upon the values of variables is
presented by a program containing a non-ending loop, cycling through a finite
number of different states. Eternal cycling follows from the fact that a
different points of progress the same state prevails. But then the state is
clearly incapable of distinguishing between these two different points of
progress!)

We can state our problem in another way. Given a program in action and
suppose that before completion of the computation the latter is stopped at
one of the discrete points of progress. How can we identify the point of
interruption, for instance if we want to redo the computation up to the very
same point ? Or also • if stopping was due to some kind of dynamic error, how
can we identify the point of progress short of a complete memory dump ?

For the sake of simplicity we assume our program text spread out in
(linear) text space and assume an identifying mechanism for the program
points corresponding to the discrete points of computation progress; let us
call this identifying mechanism "the textual index". (If the discrete points of
computation progress are situated in between successive statement executions,

22 E. W. DIJKSTRA

the textual index identifies, say, semicolons.) The textual index is a kind of
generalised order counter, its value points to a place in the text.

If we restrict ourselves to decomposition by concatenation and selection, a
single textual index is sufficient to identify the progress of the computation.
With the inclusion of repetition clauses textual indices are no longer sufficient
to describe the progress of the computation. With each entry into a repetition
clause, however, the system could introduce a so-called "dynamic index",
inexorably counting the ordinal number of the corresponding current repeti-
tion; at termination of the repetition the system should again remove the
corresponding dynamic index. As repetition clauses may occur nested inside
each other, the appropria te mechanism is a stack (i.e. a last-in-first-out-
memory). Initially the stack is empty; at entry of a repetition clause a new
dynamic index(set to zero or one) is added on the top of the stack; whenever
it is decided that the repetition is not terminated the top element of this stack
is increased by 1; whenever it is decided that a repetition is terminated, the
top element of the stack is removed. (This arrangement reflects very clearly
that after termination of a repetition the number of times, even the fact that
it was a repetition, is no longer relevant.)

As soon as the programming language admits procedures, then a single
textual index is no longer sufficient. In the case that a textual index points
to the interior of a procedure body, the dynamic progress of the computation
is only characterised when we also describe to which call of the procedure we
refer, but this can be done by giving the textual index pointing to the place
of the call. With the inclusion of the procedure the textual index must be
generalised to a stack of textual indices, increased by one element at procedure
call and decreased by one element at procedure return.

The main point is that the values of these indices are outside the pro-
grammer's control; they are defined (either by the write-up of his program or
by the dynamic evolution of the current computation) whether he likes it or
not. They provide independent co-ordinates in which to describe the progress
of the computation, a "variable-independent" frame of reference in which
meanings to variables can be assigned.

There is, of course, even with the free use of jumps, a programmer inde-
pendent co-ordinate system in terms of which the progress of a sequential
computation can be described uniquely, viz. a kind of normalised clock that
counts the number of "discrete points of computation progress" passed since
program start. It is unique, but utterly unhelpful, because the textual index
is no longer a constituent component of such a co-ordinate system.

The moral of the story is that when we acknowledge our duty to control the
computations (intellectually!) via the program text evoking them, that then
we should restrict ourselves in all humility to the most systematic sequencing

NOTES ON STRUCTURED PROGRAMMING 23

mechanisms, ensuring that "progress through the computation" is mapped
on "progress through the text" in the most straightforward manner.

8. ON COMPARING PROGRAMS

It is a programmer's everyday experience that for a given problem to be
solved by a given algorithm, the program for a given machine is far from
uniquely determined. In the course of the design process he has to select
between alternatives; once he has a correct program, he will often be called to
modify it, for instance because it is felt that an alternative program would be
more attractive as far as the demands that the computations make upon the
available equipment resources are concerned.

These circumstances have raised the question of the equivalence of
programs: given two programs, do they evoke computations establishing the
same net effect ? After suitable formalisation (of the way in which the programs
are given, of the machine that performs the computations evoked by them
and of the "net effect" of the computations) this can presumably be made
into a well-posed problem appealing to certain mathematical minds. But I
do not intend to tackle it in this general form. On the contrary"~_nstead of
starting with two arbitrarily given programs (say: independently conceived
by two different authors) I am concerned with alternative programs that can
be considered as products of the same mind and then the question becomes:
how can we conceive (and structure) those two alternative programs so as to
ease the job of comparing the two?

I have done many experiments and my basic experience gained by them
can be summed up as follows. Two programs evoking computations that
establish the same net effect are equivalent in that sense and a pr ior i not in
any other. When we wish to compare programs in order to compare their
corresponding computations, the basic experience is that it is impossible (or
fruitless, unattractive, or terribly hard or what you wish) to do so when on
the level of comparison the sequencing through the two programs differs.
To be a little more explicit: it is only attractive to compare two programs
and the computations they may possibly evoke, when paired computations
can be parsed into a time-succession of actions that can be mapped on each
other and the corresponding program texts can be equally parsed into
instructions, each corresponding to such an action.

This is a very strong condition. Let me give a first example.

Excluding side-effects of the boolean inspections and assuming the value
"B2" constant (i.e. unaffected by the execution of either " S I " or "$2"), we

can establish the equivalence of the following two programs:

24

and

E. W. DIJKSTRA

"if B2 then

begin while B1 do S1 end

else

begin while B1 do $2 end" (1)

"while B1 do

begin if B2 then S1 else $2 end" (2)

The first construction is primarily one in which sequencing is controlled
by a selective clause, the second construction is primarily one in which
sequencing is controlled by a repetitive clause. I can establish the equivalence
of the output of the computations, but I cannot regard them as equivalent in
any other useful sense. I had to force myself to the conclusion that (1) and
(2) are "hard to compare". Originally this conclusion annoyed me very much.
In the meantime I have grown to regard this incomparability as one of the
facts of life and, therefore, as one of the major reasons why I regard the
choice between (1) and (2) as a relevant design decision, that should not be
taken without careful consideration. It is precisely its apparent triviality
that has made me sensitive to the considerations that should influence such a
choice. They fall outside the scope of the present section but I hope to return
to them later.

Let me give a second example of incomparability that is slightly more
subtle.

Given two arrays X[I :N] and Y[I:N] and a boolean variable "equal",
make a program that assigns to the boolean variable "equal" the value:
"the two arrays are equal element-wise". Empty arrays (i.e. N = 0) are
regarded as being equal.

Introducing a variable j and giving to "equal" the meaning "among the
first j pairs no difference has been detected", we can write the following
two programs.

"j: = 0; equal: = true;

while j ~= N do
begin j: = j + 1; equal: = equal and (X[j] = YD']) end" (3)

and

"j: = 0; equal: = true;
while j -¢ N and equal do

begin j: = j + 1; equal: = (X[j] = YU])end". (4)

Program (4) differs from program (3) in that repetition is terminated as
soon as a pair-wise difference has been detected. For the same input the

NOTES ON STRUCTURED PROGRAMMING 25

number of repetitions may differ in the two programs and therefore the
programs are only comparable in our sense as long as the last two lines of the
programs are regarded as describing a single action, not subdivided into
subactions. But what is their relation when we do wish to take into account
that they both end with a repetition? To find this out, we shall prove the
correctness of the programs.

On the arrays X and Y we can define of 0 ~< j ~< N the N + 1 functions
EQUALj as follows:

for j = 0 EQUALj = true,

for j > 0 EQUALj = EQUALj_ i and (X[j] = Y[j]). (5)

In terms of these functions it is required to establish the net effect

equal = EQUAL N.

Both programs maintain the relation

equal = EQUALj (6)

for increasing values of j, starting with j = 0.

It is tempting to regard programs (3) and (4) as alternative refinements
of the same (abstract) program (7):

"j: = 0; equal: = EQUALo;

while "perhaps still:equal ~ EQUALN" do

begin j: = j + 1; "equal: = EQUALj" end" (7)

in which "perhaps still: equal -¢ EQUALN" stands for some sort of still open
primitive. When this is evaluated

equal = EQUALj

will hold and the programs (3) and (4) differ in that they guarantee on different
criteria that "equal" will have its final value EQUAL N.

In program (3) the criterion is very naive, viz.

j - - N .

At the beginning of the repeated statement

equal = EQUAL./

still holds. After the execution of " j ' = j + 1" therefore

equal = EQUALj_ 1

holds and the assignment statement

"equa l := equal and (X[j] = Y[j'])"

is now a straightforward transcription of the recurrence relation (5).

To come to program (4) some analysis has to be applied to the recurrence
relation (5), from which can be derived (by mathematical induction again) that

26 E. W. DIJKSTRA

EQUAL. /= false implies EQUALs = false, and therefore EQUALj = false
implies EQUAL. /= EQUALN. If this situation arises, the equality "equal =
EQUALN" can also be guaranteed and this leads to program (4). The set of
(sub)computations the repeated statement has to cope with in program (4)
is restricted to those with the initial state "equal = true" and therefore in
program (4) the assignment "equal: = EQUAL/" can be abbreviated to

"equa l := (X[j] = YLi])"

And now it is clear why the introduction of (7) as an abstraction of (3)
and (4) was misleading. With "perhaps still: equal -~ EQUALN" we have
stated the meaning of truth and falsity of a boolean expression without
stating the expression itself and that was very tricky. We have tried to
interpret (7) as a program in which part of the sequencing at its own level was
undefined and varying over its refinements. As a result we have tried to view
the last lines of (7) as a model for the last lines of both (3) and (4), but this
was misleading because the computations to be evoked by them cannot be
brought into a one-to-one correspondence.

So much for programs that we consider as incomparable. Examples of
comparable programs will be encountered in the following sections. A final
remark" we have stated that "paired computations can be parsed into a
time-succession of actions that can be mapped on each other". We have not
required that actions so paired should have the same net effect! We may
compare alternative programs for the same job but also different programs
for similar jobs.

9. A FIRST EXAMPLE OF STEP-WISE PROGRAM COMPOSITION

In the section "On understanding programs." I have stressed the need for
systematic sequencing so that the structure of the computations could be
reflected in the structure of our program: in this way we can speak of the
joint structuring of program and computations. In the current section I shall
now try to give a little more content to the still rather vague notion of
structuring computations. It will be a first effort to exploit our powers of
abstraction to reduce the appeal made to enumerative reasoning; it will be a
consequent application of the decompositions mentioned in the section "On
understanding programs.".

Instead of presenting (as a ready-made product) what I would call a well-
structured program I am going to describe in very great detail the composition
process of such a program. I do this because programs are not there: on the
contrary, they have to be made, and the kind of programs I am particularly
interested in are those which I feel to be reasonably well suited to our powers
of construction and conception.

NOTES ON STRUCTURED PROGRAMMING 27

The task is to instruct a computer to print a table of the first thousand
prime numbers, 2 being considered as the first prime number.

Note 1. This example has been chosen because on the one hand it is sufficiently
difficult to serve as a model for some of the problems encountered in pro-
gramming, and on the other hand its mathematical background is so simple
and familiar that our attention is not usurped by the problem.

Note 2. I do not claim that my final program will be "the best one", measured
by whatever yardstick any of my readers might care to choose. At least two
readers of a previous version of this presentation--in which remainders were
computed via a divide operation--reacted quite vehemently to it: "But
everyone knows that the most efficient way to generate prime numbers is by
using the Sieve of Eratosthenes." thereby blocking their ability to read any
further!

The basic pattern of my approach will be to compose the program in minute
steps, deciding each time as little as possible. As the problem analysis pro-
ceeds, so does the further refinement of my program.

When an algorithm has to be made, the desired computation has to be
composed from actions corresponding to a well-understood instruction
repertoire.

The simplest form of the program is

description 0:

begin "print first thousand prime numbers" end

and when "print first thousand prime numbers" refers to an instruction from
the well-understood repertoire, the description 0 solves the problem. For the
sake of argument we assume that this instruction does not occur in the well-
understood repertoire. Therefore we have to conceive a computation com-
posed from "more primitive" actions that establishes the desired net effect.
Our first proposal is to separate the generation of the prime numbers and
their printing, and we propose description 1:

begin variable "table p";

"fill table p with first thousand prime numbers";

"print table p"

end,
describing that our computation consists of a time-succession of two actions
and takes place in a state space containing a single variable, called "table p".
The first action assigns a value to this variable, the second action is controlled
by the (then current) value of this variable.

Again, when "fill table p with first thousand prime numbers" and "print
table p" occur in the well-understood repertoire (and "table p" occurs among
the implicitly available resources) then our problem is solved. Again, for the

28 I~. W. DIJKSTRA

sake of argument, we assume this not to be the case. This means that in our
next refinement we have to express how the effect of these two actions can be
established by two further (sub)computations. Apart from that we have to
decide, how the information to be contained in the intermediate value of the
still rather undefined object "table p" is to be represented.

Before going on, I would like to stress how little we have decided upon when
writing down description 1, and how little of our original problem statement
has been taken into account. We have assumed that the availability of a
resource "table p" (in some form or other) would permit us to compute the
first thousand prime numbers before printing starts, and on this assumption
we have exploited the fact that the computation of the primes can be con-
ceived independently of the printing. Of our original problem statement we
have not taken into account very much more than that at least a thousand
different prime numbers do exist (we had to assume this for the problem
statement to make sense). At this stage it is still fairly immaterial what the
concept "prime number" really means. Also, we have not committed our-
selves in the least as regards the specific layout requirements of the print-out
to be produced. Apparently it is the strength of our approach that the
consequences of these two rather independent aspects of our original problem
statement seem to have been allocated in the respective refinements of our
two constituent actions. It suggests that we have been more or less successful
in our effort to apply the golden principle "divide and rule".

Resuming our discussion, however, we have to ask ourselves, to what extent
the two subcomputations can now be conceived independently of each other.
To be more precise "Have we now reached the stage that the design of the
two subalgorithms (that have to evoke the two subcomputations) can be
conceived by two programmers, working independently of each other?".

When the two actions can no longer be regarded as invoked by instructions
from the well-understood repertoire, neither can the variable "table p" any
longer be regarded as an implicitly available resource. And in a way similar
to the one in which we have to decompose the actions into subactions, we
have to choose how the variable "table p" will be composed, viz. what data
structure we select to represent the information to be handed over via "table
p" from the first action to the second. At some point this has to be decided
and the questions are "when?" and "how?".

In principle, there seem to be two ways out of this. The first one is to try
to postpone the decision on how to structure "table p" into (more neutral,
less problem-bound) components. If we postpone the decision on how to
structure "table p", the next thing to do is to refine one of the actions or both.
We can do so, assuming a proper set of operations on the still mysterious
object "table p"; finally we collect these operations and in view of their
demands we design the most attractive structure of "table p".

NOTES ON STRUCTURED PROGRAMMING 29

Alternatively, we can try to decide, here and now, upon the structure of
"table p". Once it has been decided how the table of the first thousand primes
will be represented, the refinements of both actions can be done fairly
independently of each other.

Both ways are equally tricky, for what will be an attractive algorithm for,
say, the first subcomputation will greatly depend on the ease and elegance with
which the assumed operations on "table p" can be realised, and if one or more
turn out to be prohibitively clumsy, the whole edifice falls to pieces. Alter-
natively, if we decide prematurely upon a structure for "table p" we may well
discover that the subcomputations then turn out to be awkward. There is
no way around it" in an elegant program the structure of "table p" and the
computations referring to it must be well-matched. I think that the behaviour
of the efficient programmer can be described as trying to take the easiest
decision first, that is the decision that requires the minimum amount of
investigation (trial and error, iterative mutual adjustment etc.) for the
maximum justification of the hope that he will not regret it.

In order not to make this treatment unduly lengthy we assume that the pro-
grammer finds the courage to decide that now the structure of "table p" is the
first thing to be decided upon. Once this position has been taken, two alter-
natives immediately present themselves. On the one hand we can try to exploit
that "a table of the first 1000 primes" is not just a table of a thousand
numbersaas would be a table of the monthly wages of 1000 employees in a
fac tory~but that all these numbers are different from each other. Using
this we can arrange the information with a linear boolean array (with con-
secutive elements associated with consecutive natural numbers) indicating
whether the natural number in question is a prime number or not. Number
theory gives us an estimation of the order of magnitude of the thousandth
prime number and thereby a boundary of the length of the array that will
suffice. If we arrange our material in that way we have prepared an easy
mechanism to answer the question "is n (less than the maximum) prime or
not?". Alternatively, we can choose an integer array in which the successive
prime numbers will be listed. (Here the same estimate, obtained by means of
number theory, will be used, viz. when a maximum value qf the integer array
elements needs to be given a priori.) In the latter form we create a mechanism
suited to answer the question "what is the value of the kth prime number,
for k ~< 1000?".

We grant the programmer the courage to choose the latter representation.
It seems attractive in the printing operation in which it is requested to print
the prime numbers and not to print natural numbers with an indication
whether they are prime or not. It also seems attractive for the computing
stage, if we grant the programmer the clairvoyance that the analysis of

30 E. W. DIJKSTRA

whether a given natural number is a prime number or not, will have some-
thing to do with the question of whether prime factors of the number to be
investigated can be found.

The next stage of our program refinement then becomes the careful state-
ment of a convention regarding the representation of the still mysterious
object "table p" and a redefinition of the two operations in terms of this
convention.

The convention is that the information to be contained in "table p" will
be represented by the values of the elements of the "integer array p[1:1000]",
such that for 1 ~< k ~< 1000 p[k] will be equal to the kth prime number, when
the prime numbers are arranged in order of increasing magnitude. (If a
maximum value of the integers is implicitly understood, we assume that
number theory allows us to state that this is large enough.)

When we now want to describe this new refinement we are faced with a new
difficulty. Our description 1 had the form of a single program, thanks to the
fact that it was a refinement of the single action named "print the first
thousand prime numbers", referred to in description 0. (In more conventional
terms" description 1 could have the form of a procedure body.) This no longer
holds for our next level, in which we have to refine (simultaneously, in a sense)
three named entities, viz. "table p" and the two actions, and we should
invent some sort of identifying terminology indicating what refines what.

For the continuation of our discussion we make a very tentative proposal.
We say: description 0 is a valid text expressed in terms of a single named
action "print first thousand prime numbers"; let this be identified by the
code 0a.

Description 1 is called "1" because it is the next refinement of description
0; it contains a refinement of 0a--the only term in which description 0 is
expressed--and is itself expressed in terms of three named entities to which
we attach the codes:

"table p"

"fill table p with first thousand prime numbers"

"print table p"

la

lb

lc

code numbers, starting with l, because description ! is expressed in terms of
them, and "a", "b" and "c" being attached for the purpose of distinction.

Now we have to describe our convention chosen for the representation of
the information to be contained in "tal~le p", but this convention pertains to
all three elements l a, 1 b and 1 c. Therefore we call this description 2; it should
contain the descriptions of the three separate elements (I use the equality sign
as separator)

NOTES ON STRUCTURED PROGRAMMING 31

description 2"

1 a = " in te ge r array p[1 : 1000]"

1 b = "make for k from 1 through 1000 p[k] equal to the kth prime number"

l c = "print p[k] for k from 1 through 1000".

Description 2 is expressed in terms of three named entities to which we
give (in the obvious order) the codes 2a, 2b and 2c. (In code numbers,
description 2 is very meagre: it just states that for l a, l b and l c, we have
chosen the refinements 2a, 2b and 2c respectively.)

Remark. In the representation of the information to be contained in "table
p", we have chosen not to exploit the fact that each of the values to be printed
occurs only once, nor that they occur in the order of increasing magnitude.
Conversely, this implies that the action that has to take place under the name
of 2c is regarded as a specific instance of printing any set of thousand integer
values (it could be a table of monthly wages of thousand numbered
employees !). The net effect of the printing action in this example is an uniquely
defined as the first thousand prime numbers are" we conceive it, however, as a
specific instance of a larger class of occurrences. In the further refinement of
2c we deal with_ this whole class, the specific instance in this class being
defined by the values of the elements of the array p. When people talk about
"defining an interface" I often get the feeling that they overlook the pre-
supposed generalisation, the conception of the class of "possible" actions.

When 2b and 2c occur among the well-understood repertoire of instructions
(and therefore 2a among the resources implicitly available) our whole problem
is solved. For the sake of argument we again assume this not to be the case,
and so we find ourselves faced with the task of conceiving subcomputations
for the actions 2b and 2c. But now, thanks to the introduction of level 2,
the respective refinements of 2b and 2c can be designed independently.

The refinement of 2b: "make for k from 1 through 1000 p[k] equal to the
kth prime number".

We are looking for description 2b l, i.e. the first refinement of 2b. We
introduce a fresh numbering after 2b (rather than calling our next description
"3 something") in order to indicate the mutual independence of the refine-
ments of 2b and 2c respectively.

In description 2b 1 we have to give an algorithm describing how the elements
of the array p will get their values. This implies that we have to describe, for
instance, in what order this will happen. In our first refinement we shall
describe just that and preferably nothing more. An obvious, but ridiculous
version starts as follows (with "version number" enclosed within parentheses):

2bl(1):

beg in p[1] : = 2; p[2] : = 3; p[3] : = 5; p[4] : = 7; p[5] : = 11 ; end

32 E. W. DIJKSTRA

implying that the programmer's knowledge includes that of a table of the first
thousand primes. We shall not pursue this version as it would imply that the
programmer hardly needed the machine at all.

The first prime number being given (= 2), the thousandst being assumed
unknown to the programmer, the most natural order in which to fill the ele-
ments of the array p seems to be in the order of increasing subscript value,
and if we express just that we arrive (for instance) at

2b1(2):

begin integer k, j; k ' = 0; j ' = 1;

while k < 1000 do begin "increase j until next prime number";

k' = k + 1; p[k]" = j e n d

end

By identifying k as the number of primes found and by verifying that our
first prime number (= 2) is indeed the smallest prime number larger than 1
(=the initial value of j), the correctness of 2b1(2) is easily proved by
mathematical induction (assuming the existence of a sufficient number of
primes).

Description 2b1(2) is a perfect program when the operation described by
"increase j until next prime number"~call it 2bl(2)a~occurs among the
repertoire, but let us suppose that it does not. In that case we have to express
in a next refinement how j is increased (and, again, preferably nothing more).
We arrive at a description of level 2b2(2)

2bl(2)a =

begin boolean jprime;

repeat j" = j + 1;

"give to jprime the meaning' j is a prime number"

until jprime

end

Remark. Here we use the repeat-until clause in order to indicate that j
has always to be increased at least once.

Again its correctness can hardly be subject to doubt. If, however, we
assume that the programmer knows that, apart from 2, all further prime
numbers are odd, then we may expect him to be dissatisfied with the above
version because of its inefficiency. The price to be paid for this "lack of
clairvoyance" is a revision of version 2b1(2). The prime number 2 will be
dealt with separately, after which the cycle can deal with odd primes only.
Instead of 2b1(2) we come to

NOTES ON STRUCTURED PROGRAMMING 33

2b1(3):

begin integer k, j; p[1]: = 2; k: = 1 ; j: = I ;

while k < 1000 do

begin "increase odd j until next odd prime number";

k ' = k + 1 ;p lk] '= j

end

end

where the analogous refinement of the operation between quotes--"2b 1 (3)a"
say--leads to the description on level 262(3):

2bl(3)a =

begin boolean jprime;

repeat j: = j + 2;

"give for odd j to jprime the meaning" j is a prime number";

until jprime

end

The above oscillation between two levels of description is in fact nothing
else but adjusting to our convenience the interface between the overall
strucl~ure and the primitive operation that has to fit into this structure. This
oscillation, this form of trial and error, is definitely not attractive, but with a
sufficient lack of clairvoyance and being forced to take our decisions in
sequence, I see no other way: we can regard our efforts as experiments to
explore (at a rather low cost!) where the interface can probably be most
conveniently chosen.

Remark. Both 2bl (2) and 2b 1(3) can be loosely described as

begin "set table p and j at initial value";

while "table p not full" do

begin "increase j until next prime number to be added";

"add j to table p"

end

end

but we shall not do this as the sequencing in the two versions differs (see
"On comparing programs") and we regard them as "incomparable". By
choosing 2b1(3) we decide that our trial 2bl(2)--as 2bl(1)--is no longer
applicable and therefore rejected.

The change from 2b1(2) to 2b1(3) is justified by the efficiency gain at the
levels of higher refinement. This efficiency gain is earned at level 2b2, because

34 E . W . DIJKSTRA

now j can be increased by 2 at a time. It will also manifest itself in the still
open primitive at level 2b2(3) where the algorithm for "give for odd j to
jprime the meaning" j is a prime number" has only to cater for the analysis
of odd values of j.

Again: in 2b2(3) we have refined 2bl (3) with an algorithm which solves our
problem when "give tbr o d d j to jprime the meaning" j is a prime number"- -
call it "2b2(3)a"--occurs among the well-understood repertoire. We now
assume that it does not, in other words we have to evoke a computation
deciding whether a given odd value o f j has a factor. It is only at this stage
that the algebra really enters the picture. Here we make use of our knowledge
that we only need to try prime factors: furthermore we shall use the fact that
the prime numbers to be tried can already be found in the filled portion of
the array p.

We use the facts that

(1) j being an odd value, the smallest potential factor to be tried is p[2],
i.e. the smallest prime number larger than 2

(2) the largest prime number to be tried is p[ord - 1] when p[ord] is the
smallest prime number whose square exceeds j.

(Here I have also used the fact that the smallest prime number whose square
exceeds j can already be found in the table p. In all humility I quote Don
Knuth's comment on an earlier version of this program, where i took this
fact for granted:

"Here you are guilty of a serious omission! Your program makes use of a
deep result of number theory, namely that if p, denotes the nth prime
number we always have

Pn+l < P 2 . "
Peccavi.)

If this set is not empty, we have a chance of finding a factor, and as soon
as a factor has been found, the investigation of this particular j value can be
stopped. We have to decide in which order the prime numbers from the set will
be tried, and we shall do so in order of increasing magnitude, because the
smaller a prime number the larger the probability of its being a factor ofj .

When the value of ord is known we can give for "give for odd j to jprime
the meaning: j is a prime number" the following description on level 2b3(3):

2b2(3)a =

begin integer n; n' = 2; jprime" = true;

while n < ord and jprime do

begin "give to jprime the meaning" p[n] is not a factor o f j " ; n" = n + 1

end

end

NOTES ON STRUCTURED PROGRAMMING 35

But the above version is written on the assumption that the value of ord,
a function of j, is known. We could have started this refinement with

begin integer n, ord;

ord: = 1; while p[ord] '~ 2 ~ j do ord: = ord + 1;
, ° ° ° ° ° °

i.e. recomputing the value of "ord" afresh, whenever it is needed. Here some
trading of storage space for computation time seems indicated: instead of
recomputing this function whenever we need it, we introduce an additional
variable ord for its current value: it has to be set when j is set, it has to be
adjusted when j is changed.

This, alas, forces upon us some reprogramming. One approach would be to
introduce, together with j, an integer variable ord and to scan the programs in
order to insert the proper operations on ord, wheneverj is operated upon. I do
not like this because at the level at which j is introduced and has a meaning,
the function "ord" is immaterial. We shall therefore try to introduce ord only
at its appropriate level and we shall be very careful.

For 2b: "make for k from 1 through 1000 p[k] equal to the kth prime
number" we write (analogous to level 2b1(3))

level 2b 1(4):

begin integer k, j; p[1]: = 2; k: = 1 ;
"set j to one";

while k < 1000 do
begin "increase odd j until next odd prime number";

k : = k + l ; p [k] : = j

end

end

expressed in terms of

2bl (4)a "increase odd j until next odd prime number"

2b 1 (4)b "set j to one".

In our next level we only introduce the subcomputation for 2bl(4)a; the
other is handed down.

level 2b2(4):

2bl(4)a =

begin boolean jprime;

repeat "increase j with two";

"give for odd j to jprime the meaning" j is a prime number"

until jprime

end;

36 E.w. DIJKSTRA

2bl (4)b = 2b2(4)b

expressed in terms of

2b2(4)b still meaning "set j to one"

2b2(4)c "increase j with two"

2b2(4)d "give for odd j to jprime the meaning" j is a prime number".

It is only at the next level that we need to talk about ord. Therefore we
now write

level 2b3(4): integer ord;

2b2(4)b =

begin j ' = 1; "set ord initial" end;
2b2(4)c =

begin j" = j + 2; "adjust ord" end;

2bZ(4)d =

begin integer n; n" = 2; jprime" = true;

while n < ord and jprime do
begin "give to jprime the meaning" p[n] is not a factor o f j " ;

n : = n + l

end
end
expressed in terms of

2b3(4)a "set ord initial"

2b3(4)b "adjust ord"

2b3(4)c "give to jprime the meaning: p[n] is not a factor o f j " .

In our next level we give two independent refinements. (Note. We could
have given them in successive levels, but then we should have to introduce an
arbitrary ordering to these two levels. We could also try to treat the refine-
ments separately--i.e, as separately as 2b and 2c--but we feel that it is a little
premature for this drastic decision.) We are going to express

(1) that, ord being a non-decreasing function o f j and j only increasing in
value, adjust .ment of ord implies a conditional increase;

(2) that, whether pin] is a factor of j is given by the question whether the
remainder equals zero.

This leads to

level 2b4(4):

2b3(4)a = 2b4(4)a

NOTES ON STRUCTURED PROGRAMMING 3?

2b3(4)b =

begin while "ord too small" do "increase ord by one" end;

2b3(4)c =

begin integer r;
"make r equal to remainder o f j over pin]";

]p r ime ' - - (r # 0)

end

expressed in terms of

2b4(4)a still meaning "set ord initial"

2b4(4)b "ord too small"

264(4)c "increase ord by one"

264(4)d "make r equal to remainder of j over p[n]"

If we have a built-in division, the implementation of "make r equal to the
remainder o f j over p[n]" can be assumed to be an easy matter. The case that
the refinement of 2b4(4)d can be treated independently is now left to the
interested reader. To give the algorithm an unexpected turn we shall assume
the absence of a convenient remainder computation. In that case the algorithm

" r ' = j ; while r > 0 do r ' = r - p[n]"

would lead to the (non-positive) remainder but it would be most unattractive
from the point of view of computation time. Again this asks for the intro-
duction of some additional tabulated material (similar to the way in which
"ord" has been introduced).

We want to know whether a given value of] is a multiple ofp[n] for n < ord.
In order to assist us in this analysis we introduce a second array in the
elements of which we can store multiples of the successive prime numbers, as
close to j as is convenient. In order to be able to give the size of the array we
should like to know an upper bound for the value of ord; of course, 1000
would be safe, but number theory gives us 30 as a safe upper bound. We
therefore introduce

integer array mult [1:30]

and introduce the convention that for n < ord, mult [n] will be a multiple of
p[n] and will satisfy the relation

mult [n] <] + p[n]

a relation that remains invariantly true under increase of]. Whenever we wish
to investigate, whether p[n] is a factor of j, we increase mult [n] by p[n] as
long as

mult [n] < j.

i

38 E. W. DIJKSTRA

After this increase mult [n] = j is the necessary and sufficient condition for
j to be a multiple of p[n].

The low maximum value of ord has another consequence: the inspection
"ord too small" can be expressed by

"p[ord] T 2 ~. j "

but this inspection has to be performed many times for the same value of ord.
We may assume that we can speed up matters by introducing a variable
(called "square") whose value equals p[ord] T 2.

So we come to our final

level 2b5(4):

integer square; integer array mult [1 : 30];

2b4(4)a =

begin ord: = 1 ; square: = 4 end;

2b4(4)b =

(square ~< j) ;

2b4(4)c =

begin mult [ord]: = square; ord: = ord + 1 ; square: = p[ord] 1" 2 end;

2b4(4)d =

begin while mult In] < j do mult [n]: = mult In] + p[n]; r: = j - mult In] end

which has made our computation close to an implementation of the Sieve of
Eratosthenes !

Note. In the refinement of 2b4(4)d, when mult[n] is compared with the
current value of j, multi-n] is increased as much as possible; this could have
been done in steps of 2 * pin], because we only submit odd values o f j and
therefore are only interested in odd multiples ofp[n]. (The value of multi1]
remains, once set, equal to 4.)

The refinement of 2c "print p[k] f o r k from 1 through 1000" is left to the
reader. I suggest that the table should be printed on five pages, each page
containing four columns with fifty consecutive prime numbers.

Here I have completed what I announced at the beginning of this section,
viz. "to describe in very great detail the composition process of such a
[well-structured] program". I would like to end this section with some
comments.

The most striking observation is that our treatment of a very simple
program has become very long, too long indeed for my taste and wishes,
even if I take into account that essentially we did two things: we made a

NOTES ON STRUCTURED PROGRAMMING 39

program and we discussed extensively the kind of considerations leading
to it. It is not so much the length of the latter part that bothers me (writers
fill whole novels with the description of human behaviour); what bothers
me is the length of the texts at the various levels. Therefore we may expect
that notational technique will be one of our main concerns.

But we have also had encouraging experiences. Giving full recognition to
the fact that the poor programmer cannot decide all at once, we succeeded
to a large extent in building up this program one decision at a time, and in
our example quite a lot of programming was already done in its definite
form while major decisions were still left open" irrespective of whether the
final decisions are taken this way or that way, the coding of the earlier levels
remains valid. In view of the requirement of program manageability, this
is very encouraging.

10. ON PROGRAM FAMILIES

In our previous section we have considered the design of a program for a
given task, but in doing so, we have considered our final program as an
isolated object, a structure standing all by itself and to be judged on its
private merits. Its structure was the result of successive decompositions;
the purpose of this structure was to make a program in such a way that its
correctness could be proved without undue intellectual labour.

In this section I am going to explain why I prefer to regard a program not
so much as an isolated object, but rather as a member of a family of "related
programs". In traditional terminology we can think about related programs
either as alternative programs for the same task or as similar programs for
similar tasks.

Why cannot the programmer confine his attention to the program he has
to make and why has he to take into account such a whole family as well?
For one thing, it is hard to claim that you know what you are doing unless
you can present your act as a deliberate choice out of a possible set of things
you could have done as well. But if we want to give due recognition to the
difficulties that are specific to the construction of large complicated programs,
there is a very practical justification. (And we have to recognise these specific
difficulties: experience has shown that someone's proven ability to do an
excellent job on a given scale is by no means a guarantee that, when faced
with a much larger job, he will not make a mess of it.)

Certainly, one of the properties of large programs is that they have to be
modified in the course of their life-time. A very common reason is that the
program, although logically correct, turns out to evoke unsatisfactory
computations (for instance unsatisfactory in one or more quantitative

40 E. W. DIJKSTRA

aspects). A second reason is that, although the program is logically correct
and even satisfactorily meeting the original demands, it turns out to be a
perfect solution for not quite the right problem; one is faced with a re-
statement of the problem and adaptation of the program.

The naive approach to this situation is that we must be able to modify
an existing program (and for this the curious term "program maintenance"
has established itself). The task is then viewed as one of text manipulation;
as an aside we may recall that the need to do so has been used as an argument
in favour of punched cards as against paper tape as an input medium for
program texts. The actual modification of a program text, however, is a
clerical matter, which can be dealt with in many different ways; my point
is that if we have our grip on. the program text primarily as on a linear
sequence of symbols, the task to establish and to describe what has to be
modified tends to become prohibitively difficult when the texts get longer and
longer.

If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the
other. It would be much more attractive if the two different programs could,
in some sense or another, be viewed as, say, different children from a common
ancestor, where the ancestor represents a more or less abstract program,
embodying what the two versions have in common. Hopefully, this common
ancestor can be readily recognised in the (prae-)documentation. The intentions
are

(1) that the two versions share their respective correctness proofs as far
as possible;

(2) that the two versions share (mechanically) as far as possible the
common (or "equal") coding;

(3) that the regions affected by the modification are already well-isolated,
a condition which is not met when the transition requires "brain-made"
modifications scattered all over the text.

Well, this is a lofty goal. It has been inspired by the potential similarity
between the task of program modification and program composition: when
a program has been built up to an intermediate stage of refinement, what
has then been written down is in fact a suitable "common ancestor" for all
possible programs produced by further refinements. It is the similarity
between "the decision to be changed" and "the decision still left open":
in both cases we are left with what remains when we abstract from such a
decision.

There is a second source of inspiration to be found in our experience.
In the process of step-wise program composition, proceeding from outside

NOTES ON STRUCTURED PROGRAMMING 41

inwards, going towards progressive refinements, we have in the earlier
stages not only postponed deciding how certain things would be done, but
we have also postponed committing ourselves as to exactly what had to be
done: with progressing refinement, more detail about the actual problem
statement has been brought into the picture. (Later examples will show this
even more clearly than the problem of the prime table.) As a result, our
first levels of refinement are equally applicable for the members of a whole
class of problem statements.

In other words, in the step-wise approach it is suggested that even in the
case of a well-defined task, certain aspects of the given problem statement
are ignored at the beginning. That means that the programmer does .not
regard the given task as an isolated thing to be done, but is invited to view
the task as a member of a whole family; he is invited to make the suitable
generalisations of the given problem statement. By :successively adding more
detail he eventually pins his algorithm down to a solution for the given
problem.

All this is well-known, each competent programmer does so all the time.
Yet I stress it for a variety of reasons. If the given problem statement is an
elaborate affair, i.e. too much to be grasped in a single glance, he m u s t

approach (and dissect) the problem statement in this way (see the section
m h"" "On our inability to do uc). Secondly, if the given problem is perfectly

defined, it is a wise precaution to anticipate as many future changes in the
problem statement as one can foresee and accommodate. This remark is
not an invitation to make one's program so "general" that it becomes, say,
unacceptably inefficient, as might easily happen, when the generalisations
of the problem statement are ill-considered (which might easily happen
when they have been dictated by the Sales Department !) But in my experience,
even in traditional programming, it is a very worth-while exercise to look
for feasible generalisations of conceivable utility, because such considerations
may give clear guidance as to how the final progr~tm should be structured.
But such considerations boil down to conceiving (more or less
explicitly) a whole program family!

In an earlier section ("On the reliability of mechanisms.") the need for
careful program structuring has been put forward as a consequence of the
requirement that program correctness can be proved. In this section we are
faced with another reason: program structure shouh:t be such as to anticipate
its adaptations and modifications. Our program should not only reflect
(by structure) our understanding of it, but it should also be clear from its
structure what sort of adaptations can be catered for smoothly. Thank
goodness, the two requirements go hand in hand.

42 E.W. DIJKSTRA

1 1. ON TRADING STORAGE SPACE FOR COMPUTATION SPEED

In present-day sequential computers (spring 1969) we can distinguish two
main components, an active one (the processor) and a passive one (the
store). The active component has the specific function to be fast, the passive
one has the specific function to be large. The following is written on the
assumption that this functional division is here to stay for a sufficient period
of time to make a study of its consequences relevant.

From the point of view of the programmer, storage space and computation
time are then two distinct resources and I regard it as one of the responsibilities
of the programmer--rather than of the system--to allocate them, i.e. to
divide the load between them. It is to the consequences of this responsibility
that the present section is devoted. This section is not devoted to techniques
of estimating the various loads, i.e. to give quantitative criteria by which to
influence the programmer's choice: it is devoted to the logical relation
between the alternatives between which the programmer may choose.

Note. It is not inconceivable that some of the choices can be left to the
system. In all but the most trivial cases, however, design and establishment
of the equivalence seem to require mathematical invention from the side of
the programmer. All efforts to automate this problem-solving activity fall
outside the scope of this monograph.

In its most simple form we are faced with a computation that regularly
needs the value of "FUN(arg)", where " F U N " is a given, computable
function defined on the current value of one or more stored variables,
collectively called "arg". In version A of the program, only the value of arg
is stored and the value of FUN(arg) is computed whenever needed. In version
B, an additional variable, "fun" say, is introduced, whose sole purpose is to
record the value of "FUN(arg)" corresponding to the current value of arg.

Where version A has

" a r g ' = " (i.e. assignment to arg)

version B will have

"arg: ; fun: = FUN(arg)"

thereby maintaining the relation

fun = FUN(arg)

As a result of the validity of this relation, wherever version A calls for the
evaluation of FUN(arg), version B will call for the current value of the
variable fun.

There are two possible reasons to prefer version B to version A. When
the value of FUN(arg) is more frequently requested than assignments to
arg take place, version B could require less computation time. If necessary

NOTES ON STRUCTURED PROGRAMMING 43

the technique can be refined by the introduction of a further (boolean)
variable "fun up to date", indicating whether the relation "fun = FUN(arg)"
is assumed to hold. Assignment to arg is then associated with

"fun up to d a t e : - false" ;

whenever the value of FUN(arg) is needed, inspection of this boolean
variable will tell, whether FUN(arg) has to be computed afresh; if so, the
computed value will be assigned to fun and in accordance with its meaning
"fun up to date" will be set to true. Let us call the last program version C.
It is clear that these three programs, only differing where version A assigns
to arg or uses the value of FUN(arg), are equivalent as far as their output
is concerned; it is certainly not inconceivable that version B or C is derived
from version A by mechanical means.

But quite often the situation is not as simple as that and now we come to
the second reason for introducing such a variable "fun". Often it is very
unattractive to compute FUN(arg) from scratch for arbitrary values of arg,
while it is much easier to compute how the value of FUN(arg) changes
when the value of arg is changed. In that case, the adjustment of the value
of "fun" is more intimately linked with the nature of the functional depen-
dence than is suggested by

"arg: = ; fun: = FUN(arg)".

Often this possibility is not only intimately linked to the nature of the
functional dependence, but also to the "history of the variable arg" as the
computation proceeds! We have seen a very striking example in the program
for the prime table (see Section "A first example of step-wise program
composition") with the introduction of "ord", which is functionally depen-
dent on "j", viz. "ord" is the minimum value satisfying

p[ord] T 2 > j

where the adjustment of "ord" was a very attractive operation thanks to
the fact that " j" was monotonically increasing in time.

In my understanding of programs I want such additional variables that
store redundant information, to be clearly recognised as such, even if it is a
somewhat undefined functional relationship as in the case of the table
"mult" from the same example. I am strongly inclined to view such programs
as, say, optimising refinements of a more abstract program, even when the
optimisation effected by the additional variables is essential when we want
to make a program with a realistic performance. From the point of view of
efficiency such an additional variable may be so vital that it may strike one
as irresponsible daydreaming to conceive a level in which its presence has
been abstracted from. The way in which such an additional variable is
manipulated is often experienced as the body of the algorithm" it is often
there that we harvest the fruits of our mathematical ingenuity. The point

44 E. W. DIJKSTRA

is that, although the possibility of at least one such optimising refinement is
essential for making something with a realistic performance, on closer
inspection one often discovers that such an optimising refinement is far
from unique, even on its coarsest level.

Note. I remember one program in which the additional information was so
redundant that not only the value of "fun" could be derived from that of
"arg" but also the other way round. Suddenly the relation between "fun"
and "arg" became symmetric, and I have been seriously bothered by the
question" what entitled me to treat them so asymmetrically? The program
in question generated all the solutions of a combinatorial puzzle. On closer
inspection it turned out that there was a second combinatorial puzzle, where
it could be proved that there existed a one-to-one correspondence between
the solutions of the two problems. If I had solved the second combinatorial
problem I would have found the role of "fun" and "arg" interchanged!
In traditional programming, where such functional dependencies are not
explicitly shown, the two puzzles would probably be solved by identical
programs, whereas I made two differently structured programs. And I think
rightly so, because the single program for the two puzzles needed a different
proof for its correctness, depending on which puzzle it was supposed to solve,
and this seems somewhat unfair when we also wish that our understanding
of the computations be reflected in the structure of our programs!

12. ON A PROGRAM MODEL

Before we have a program we must have Composed it; after we have a program
- - i f there was any sense in making it--we shall have it executed. In this section
I shall not stress the activities of program composition and of program
execution too much, and I shall try to view the program as a static object.
We want to view it as a highly structured object and our main question is"
what kind of structures do we envisage and why? Our hope is that eventually
we shall arrive at a program structure that is both nice to compose and nice
to execute. Mentally, of course, I am unable to ignore these processes, but
at present I do not want to discuss them; in particular: I do not want to
discuss a design methodology (whether to work "from outside inwards" or
the other way round), nor do I want to discuss implementation consequences
now. Again, in order not to complicate matters too much, I shall restrict
myself to sequential programs.

If I judge~a program by itself, my central theme, I think, is that I want
the program written down as I can understand it, I want it written down
as I would like to explain it to someone. However, without further qualifica-
tion these are just motherhood statements, so let me try and see whether I
can be more specific.

NOTES ON STRUCTURED PROGRAMMING 45

Let us consider a very simple computation, in which three distinct actions
can be distinguished to take place in succession, say: input of data, manipula-
tion (i.e. the computation proper) and the output of the results. One way of
representing the program is as a long string of statements"

begin

end

The next form adds some labels for explanatory purposes:

begin
begin of input"

° , ° ° ° ° , ° ° , . ° °

begin of manipulation:

begin of output:

end
suggesting to us, when we read the text, what is going to happen next.

Still better, we write:

begin
input ' begin

. end;

manipulation" begin

. end;

output" begin

. end
end

where the labels are considered less as markers of points in the program
text than as names of regions--as indicated by the bracket pairs " b e g i n -
end"- - tha t follow the label, or as names of the three actions in which the
computation has been decomposed. However, if we take this point of view,

46 E . W . DIJKSTRA

the three "labels" are still comments, i.e. explanatory noise for the benefit
of the interested (human) reader, whereas I would like to consider them as
an integral part of the program. I want my program text to reflect somewhere
the fact that the computation has been decomposed into a time-succession
of the three actions, whatever form these might take upon closer inspection.
A way of doing this is to write somewhere the (textual) succession of the
three (abstract) statements

"input; manipulation; output"

on the understanding that the time-succession of these three actions will
indeed be controlled from the above textual succession, whereas the further
refinements of these three actions will be given "somewhere else", perhaps
separately, but certainly without relative ordering.

Well, if closed subroutines had not been invented more than twenty years
ago, this would have been the time to do it! In other words: we are returning
to familiar grounds, to such an extent that many of my readers will even
feel cheated! I don't, because one should never be ashamed of sticking to a
proven method as long as it is satisfactory. But we should get a clear picture
of the benefits we should like to derive from it, if necessary we should adjust
it, and finally we should create a discipline for using it. Let me therefore
review the subroutine concept, because my appreciation for it has changed
in the course of the last year.

I was introduced to the concept of the closed subroutine in connection
with the EDSACt, where the subroutine concept served as the basis for a
library of standard routines. Those were the days when the construction of
hardware was a great adventure and many of the standard routines were
means by which (scarce0 memory and computation time could be traded
for circuitry: as the order code did not comprise a divide instruction, they
had subroutines for division. Yet I do not remember having appreciated
subroutines as a means for "rebuilding" a given machine into a more
suitable one, curiouslyenough. Nor do I remember from those days sub-
routines as objects to be conceived and constructed by the user to reflect
his analysis: they were more the standard routines to be used by the user.
Eventually I saw them mainly as a device for the reduction of program
length. But the whole program as such remained conceived as acting in a
single homogeneous store, in an unstructured state space; the whole computa-
tion remained conceived as a single sequential process performed by a single
processor. In the following years, in the many programming courses I gave,
I preached the gospel faithfully and I have often explained how the

? "The Preparation of Programs for an Electronic Digital Computer; with Special
Reference to the EDSAC and the use of a Library of Subroutines", M. V. Wilkes,
D. J. Wheeler and S. Gill, Addison-Wesley Press, 1951.

NOTES ON STRUCTURED PROGRAMMING 47

calling sequence handed over the return address and how the subroutine
li_1_,, • would then begin by setting "the n~ --i.e. the return jump- -a t its own

end. At present I would rather view the main program as having its own
instruction counter that just continues "counting" upon the completion of
the subroutine execution and would certainly not regard the "sleeping value"
as a parameter handed over to the subroutine. (Still the old view has found
its way into the hardware of many machines. We have seen machines in
which a subroutine jump stored the link at "address zero" of the subroutine
and ordered instruction fetch to be resumed at "address one", an arrangement
which makes re-entrant code and recursive subroutines somewhat hard to
implement. And even in this decade we find machines which store at program
interrupt the "program status" of the interrupted program at a location
associated with the interrupt rather than with the interrupted program !)

Ten years later, when ALGOL 60 emerged, the scene changed and we did
not talk any more about closed subroutines: we called them "procedures"
instead. They remained to be appreciated by the programmer as a very
handy means for shortening the program text, and more and more pro-
grammers started to use them for the purpose of structuring, so that program
adaptation to foreseen changes in problem specification could be confined
to the replacement of one or more procedure bodies, or to a procedure call
with some actual parameters changed. But the main novelty was the concept
of the local variables.

This was reflected in two important aspects. The first one was the concept
of "scope", i.e. the idea that not all variables are homogeneously accessible
all through the program: local variables of a procedure are inaccessible from
outside the procedure body, because outside it they are irrelevant. What
local variables a procedure needs to do its private task is its private concern;
it is no concern of the calling main program and the fact that the main
program can (and must !) be conceived independently of these local variables
is judiciously reflected. We may have some misgivings about the specific
scope rules, as embodied in ALGOL 60, but we should appreciate them as a
very significant step in the right direction.

The second aspect of the novelty was given by the fact that procedures
could be used recursively, more precisely, that a procedure was allowed to
call itself, either directly or indirectly. The virtue of this facility has been
the subject of many hot debates; as far as I can see the discussion has died
down. The argument against recursive procedures was always an efficiency
argument: non-re-entrant code could be executed so much more efficiently.
But with the advent of multiprogramming another need for flexible storage
allocation has emerged. And if there are still machines in which non-
re-entrant code can be executed much more efficiently, i.e. in which the use
of recursive routines is punished by too heavy a penalty, then I would venture

48 E. W. DIJKSTRA

the opinion that the structure of such a machine should now be called
somewhat old-fashioned. The recursive procedure, however, forced upon
us the recognition of the difference between its (static) text and its (dynamic)
activationmits "incarnation" as it has been called. The procedure text is
one thing; the set of local variables it operates upon this time is quite another
matter.

So far, so good, but now some of its shortcomings (and I don't care,
whether you call them linguistic or conceptual). Local variables are "created"
upon procedure entry, and are "annihilated" upon procedure exit. It is
precisely this automatic control over the life-time of variables pertaining to
a procedure incarnation that allows us to implement the (recursive) procedures
by means of a stack (i.e. a last-in-first-out storage arrangement). The fact
that local variables pertaining to an incarnation only exist during the incar-
nation make it impossible for the procedure to transmit information behind
the scenes from one incarnation to the next. To overcome this the concept
"own" has been introduced, but this is no solution to the problem" what
own variables are really good for becomes very unclear in the case of
recursion and, secondly, it is impossible to write a set of procedures sharing
a number of own variables. (We can simulate this by declaring them in an
outer block, embracing the procedure declarations, but then the scope
rules make them too generally accessible" they can then no longer be regarded
as "behind the scenes".) Our conclusion--by no means new and by no
means only mine!--is that the concept "own" as introduced in ALGOL 60
must be regarded as ill-considered, and that we must look for new ways to
control and describe life-time, accessibility and identity of local variables.

But I have stiIl another complaint about the procedure concept, and that
is that it is still primarily regarded as a means for shortening the program
text (although it may be a text of unknown length as in the case of recursion).
The semantics of the procedure call are described in terms of the famous
"copy rule": the procedure call is to be understood as a short-hand, because,
semantically speaking, we should replace it with a copy of the text of the
procedure body (with suitable adjustments of identifiers and substitutions
for parameters) whereupon the thus modified text will be executed by the
same machine as the one executing the main program. It remains (a repre-
sentation for) a single program text to be executed by a single sequential
machine. And it is precisely this picture of a single machine that does not
satisfy me any longer.

I want to view the main program as executed by its OWl], dedicated
machine, equipped with the adequate instruction repertoire operating on
the adequate variables and sequenced under control of its own instruction
counter, in order that my main program would solve my problem if I had
such a machine. I want to view it that way, because it stresses the fact that

NOTES ON STRUCTURED PROGRAMMING 49

the correctness of the main program can be discussed and established
regardless of the availability of this (probably still virtual) machine" I don't
need to have it, I only need to have its specifications as far as relevant for
the proper execution of the main program under consideration.

For me, the conception of this virtual machine is an embodiment of my
powers of abstraction, not unlike the way in which I can understand a
program written in a so-called higher level language, without knowing how
all kinds of operations (such as multiplication and subscription) are imple-
mented and without knowing such irrelevant details as the number system
used in the hardware that is eventually responsible for the program execution.

In actual practice, of course, this ideal machine will turn out not to exist,
so our next task--structurally similar to the original one--is to program
the simulation of the "upper" machine. In programming this simulation
we have to decide upon data structures to provide for the state space of the
upper machine; furthermore we have to make a bunch of algorithms, each
of them providing an implementation of an instruction assumed for the
order code of the upper machine. Finally, the "lower" machine may have a
set of private variables, introduced for its own benefit and completely outside
the realm and scope of the upper machine. But this bunch of programs is
written for a machine that in all probability will not exist, so our next job
will be to simulate it in terms of programs for a next-lower machine, etc.
until finally we have a program that can be executed by our hardware.

If we succeed in building up our program along the lines just given, we
have arranged our program in layers. Each program layer is to be understood
all by itself, under the assumption of a suitable machine to execute it, while
the function of each layer is to simulate the machine that is assumed to be
available on the level immediately above it.

Why this model? What are the benefits we hope to derive from it? Let me
try to list them.

(1) Our experience as recorded in "A first example of step-wise program
composition" strongly suggests that the arrangement of various layers,
corresponding to different levels of abstraction, is an attractive vehicle for
program composition.

(2) It is not vain to hope that many a program modification can now be
presented as replacement of one (virtual) machine by a compatible one.

(3) We may hope that the model will give us a better grip on the problems
that arise when a program has to be modified while it is in action. If a
machine at a given level is stopped between two of its instructions, all lower
machines are completely passive and can be replaced, while all higher
machines must be regarded as engaged in the middle of an instruction" their
state must be considered as being in transition. In a sequential machine the

50 E. W. DIJKSTRA

state can only be interpreted in between instruction executions and the
picture of this hierarchy of machines, each having its own instruction counter
~"count ing its instructions"~seems more profitable if we wish to decide
at any given moment, what interpretations are valid. In the usual pro-
gramming language in which computational progress is measured in a
homogeneous measure~say "the grain" of one statement~I feel somewhat
helpless when faced with the question of which interpretations are valid
when.

(4) We may hope that the model will even assist us in recovery problems
--total or partial--when some malfunctioning has been detected. (Recently
I have been involved in the design and construction of a multiprogramming
system, but one of the most annoying things was our total inability to
estimate (mechanically) the scope of the disaster when a memory cell gave a
parity alarm. The only safe reaction we could implement was instantaneous
machine stop, hardly a solution to be proud of!)

(5) The picture of a layered hierarchy of machines provides a counter
poison to one of the dangers evoked by ruthless application of the principle
"Divide and Rule", viz. that different components are programmed so
independently of each other that duplication of work (or worse) takes place.
The fact that a layer contains "a bunch of programs" to be executed by some
conceptual machine stresses the fact that the programs of this bunch are
invited to share the same primitives. Separation of tasks is a good thing, on
the other hand we have to tie the loose ends together again!

13. A SECOND EXAMPLE OF STEP-WISE PROGRAM COMPOSITION

With a picture of program structure as a layered hierarchy of machines
emerging, my fingers are itching to play with it, i.e. to make another program.
The notational techniques employed should not be regarded as a well-
considered proposal: they have been chosen to suit my fancy and should
be regarded as part of the experiment.

The problem is the following one. There is given a line printer which is
controlled by two commands "NLCR" (New Line Carriage Return) which
defines the utmost left position of the next line as the "currently printable
position", and the command "PRSYM(n)" which prints a character
identified by the value of the integer parameter n on the currently printable
position and defines the position immediately to the right of the printed
position as the new currently printable position. (For our discussion we
can regard lines of infinite length as permissible.) We shall only make use of
two specific values of n, called "space" and "mark" respectively. "PRSYM
(space)" causes the currently printable position to remain blank, "PRSYM
(mark)" will print a given, visible character, some sort of asterisk say.

NOTES ON STRUCTURED PROGRAMMING 51

Furthermore two integer function of an integer argument are given,
satisfying

for 0 ~< i < 1000:0 ~< fx(i) < 100 and 0 ~< fy(i) < 50.

Now we have to make a program printing 50 lines, numbered from top to
bottom by a y-coordinate running from 49 through 0, the positions on a line
being numbered from left to right by an x-coordinate running from 0 through
99. On the thousand positions (or less in the case of coincidence) given by

x = fx(i) and y = fy(i) for some i satisfying 0 ~< i < 1000

a mark has to be printed; all other positions on the paper have to remain
blank. In other words: a curve is given in a discrete parameter representation
and we wish to use the line printer as a digital plotter.

I have used this problem extensively in viva voce examinations and the
majority of the students quickly discover that, due to the absence of OLCR
(Old Line Carriage Return) and of a "backspace", the order in which the
printable positions have to be served is dictated by the printing commands
and, secondly, that this order has nothing to do with the order of the marks
if we number them, say, in the order of increasing i. As a result they quickly
conclude that the use of storage seems indicated: first the thousand/-values
should be scanned, i.e. the page image should be stored in a convenient
manner, while afterwards, under control of the stored image, the page
should be printed. (To be more precise: we assume that the computer has
sufficient store for this purpose and that the computation of the function
values "fx (i)" and "fy(i)" may be so time-consuming that we wish to have
them computed only once for each/-value.)

We now document this design decision, and I propose the following piece
of text:

COMPFIRST

begin

draw: {build; print};

var image;

instr build(image), print(image)

end

The above piece of documentation, which is considered as an integral
part of the final program, should be interpreted as follows.

It refers to a machine called " C O M P F I R S T " (we use capitals for machine
names and try to express the type of decision reflected in the program made
for them).

The next line gives a named algorithm" its name is "draw" (this being
assumed to be the name of the total program to be made, that has to "draw"

52 E. W. DIJKSTRA

a curve), the algorithm expresses the desired time-succession of two actions,
building the image in store, followed by printing paper under control of the
stored value.

In the last two lines we give the declarations (or declaration headings),
naming the components of the machine for which the above algorithm is
intended. The first line describes that the name "image" will be used for the
data structure that has to accommodate the page image; the variable
"image" is the only component of the state space of this machine. Its
instruction code comprises two instructions, named "build" and "print"
respectively.

Before proceeding, it should be noted that we have used abbreviations,
some of which I do not yet know whether they are very wise or very foolish.
They have both to do with the fact that the variable "image" is a unique
variable of this type.

If the state space should have contained two images, I would have written

"type image;

image var image 1, image2"

expressing that the state space comprises two variables (called "image l"
and "image2" respectively), with the same set of possible values, this set
being characterised by their type, called "image". In a later step the type
image would enjoy further detailing and this would apply to both variables.
As the set of variables of this type contains only one element, I have ventured
not to distinguish between the set (called "image") and its only element
(also called "image"). When descriptions in COMPFIRST (such as
"build(image)") refer to "image", they refer to the variable; when later
structuring detail is given, it refers to the type image.

The last line contains the code of instructions which are like the procedure
heading. In general they contain the type of the parameters, where the call
contains the variables as actual parameters. Again this seems foolish if the
parameter is uniquely given by its type and for this reason we have mentioned
the actual parameter in the declaration, and have omitted the mentioning
of "image" in the code describing the algorithm "draw". Thus we can reserve
the explicitly mentioned actual parameters for the case where this combina-
torial freedom is actually used.

Before proceeding, I would like to stress that our little algorithm named
"draw" can and should be regarded as a program written for a machine.
We should write the manual for this machine; in it we have to state

(1) that the operation "build" assigrts a value to the variable "image"
specifying the image to be printed on paper as given by the functionsfx andfy.

(2) that the operation "print" prints the picture on paper as specified by
the current value of the variable "image".

NOTES ON STRUCTURED PROGRAMMING ~3

The fact that it can really be regarded as an algorithm for a machine is
perhaps most easily seen when we consider alternative algorithms for "draw"
e.g.

draw: (print; build)

is wrong, because now the action "print" is undefined;

draw: {build; build; print)

is correct but unnecessarily time-consuming, because the second action
"build" assigns to "image" the value it already has;

draw: {build; print; print)

would make sense: it would print the picture twice.
We now resume our programming task. If we had machine " C O M P F I R S T "

at our disposal, the little program named "draw" to be executed by it would
do the job. For the sake of argument and in order to be realistic we now
assume that we do not have at our disposal such a machine tailored to our
needs, and therefore our next task (similar to the previous one !) is to make
such a machine.

There are three named entities assumed, viz. "build", "print" and "image",
where the first two refer to the latter one. As a consequence; a further
detailing of the latter one will affect the two first ones; also, it ig very hard
to give any further detailing of the action "print" without any further
commitments as to the structure of "image". The action "build", however,
admits a further detailing all by itself. And it is for that reason that we take
"build" as our first candidate for further refinement.

We have to describe how the variable "image" will get its value corres-
ponding to the proper positioning of the thousand marks. As a total operation,
it assigns a value to a variable, whose earlier value was undefined: anticipating
that the marks will be added "one at a time", we see, that addition of a next
mark will turn out to be an action operating on an already defined value
of the variable "image". It therefore seems attractive to view the whole
setting of the marks as operating on an already defined value, viz. the one
corresponding to the blank page. This decision leads to

CLEARFIRST

begin
build: {clear; setmarks);

instr clear(image), setmarks(image)

end

where the action "clear" assigns to image the value corresponding to a
picture of fifty blank lines, where the action "setmarks" adjusts the initial
value of image to the one in which the thousand (or less) marks of the curve
have been added.

54 E. W. DIJKSTRA

Again, CLEARFIRST is a machine for which alternative programs could
have been written, e.g.

build: {clear}

would make sense, but would produce fifty blank lines as output;

build: {setmarks; clear}

would contain an undefined operation;

build: {clear; clear; setmarks}

would contain a superfluous operation, just as

build: {clear; setmarks; setmarks}

would, because the second action "setmarks" would only add marks to the
picture that would already be there and therefore would not change the
value of "image".

(Note on notation used. The algorithm explaining "build" in terms of
"clear" and "setmarks" does so without explicitly mentioning "image",
because we do not wish to use the actual parameter notation in algorithms
unless its actual combinatorial freedom is in fact used in this machine.

Furthermore, "build" being a one-parameter operation no separate
identifier for its formal parameter has been introduced. Also this abbreviation
on my part could turn out to be very unwise.)

The next step in the design of the computationNbecause it can be made
without any further commitments is to describe how the thousand marks
of the curve will be dealt with in turn. For the time being I propose the
following write-up:

ISCANNER

begin integer i;

setmarks: {i: = O; while i < 1000 do {add mark; i plus 1 } };

instr add mark(i, image)

end

This algorithm is to be understood in a machine whose instruction repertoire
comprises "add mark(i, image)" which will change the value of "image" in
accordance with the addition of the ith mark. It describes the order in which
the marks are dealt with; it shows all marks will be dealt with exactly once.

But this is not all" a new variable (viz. "i") has been introduced, the
algorithm appeals to a set of actions referring to this variable (" i := 0",
"i < 1000" and "i plus 1") and if I were completely consistent, it seems
that I should list them at the bottom, as possibly requiring further clarifica-
tion at a later stage, just as "add mark". I have not done so (I have treated
them along the same lines as the while-do clause). From the point of view of

NOTES ON STRUCTURED PROGRAMMING 55

language semantics this separate treatment of an implicitly understood
type integer does not seem attractive, and it seems hard to justify, why the
type integer is treated differently from the type "image": both are implicitly
understood in this machine.

Yet I have done it. All the time I design programs for non-existing machines
and add: "if we now had a machine comprising the primitives here assumed,
then the job is done". This is, logically speaking, correct; in practice it is a
joke, because we know very well that we cannot assume a general purpose
machine to be available whose instruction code is so very well tailored to
our needs. We should not close our eyesmnor feign to do so!--to our
responsibility to provide such primitives in a later stage of the design. When
I now appeal to a well-understood type "integer" and the operations defined
on variables of such a type in this exceptional manner, I do so with the
intention of expressing that--although these facilities have to be provided
in some form or another--providing these facilities fall outside the scope
of the programmer's responsibility and also that the programmer will
accept any reasonable implementation of them.

Again we are left with a primitive that admits further refinement without
commitments regarding the other primitives. We have to describe how
dealing with mark no. i can be expressed in terms of dealing with a position
on the page: we create the machine dealing with the computation of this
position.

COMPPOS

begin integer x,y;

add mark: (x: = fx (i) ; y: = fy(i) ; mark pos };

instr mark pos (x, y, image)

end
where "mark pos" will change the current value of the variable "image" in
accordance with the addition of a mark with the co-ordinates "x" and "y"
on the picture to be printed.

(Note. In the last refinement it is explicitly assumed that the functions
f x (i) and fy(i) can be evaluated in any order of their argument values. If
these two thousand function values were to be read from an input stream,
pair wise in a prescribed order of/-values, then the last two machines would
have to be merged into a single one.)

By now I see no possibility of further refinement without committing
myself to the structure of the still rather vague type "image". How do we
propose that this value will be stored? We have to structure the variables
of type "image", or, what amounts to exactl3, the same thing, we have to
choose a representation for its possible values.

56 E. W. DIJKSTRA

While lecturing at various places I have described versions of this program
to different audiences, and it may be worth-while to point out that at least
twice part of my audience was deeply troubled by the time I had reached
this stage. They felt for instance, that I could not claim that my program,
as far as developed, was correct; they objected to my remark that

draw: {build; print; print}

would produce the same picture twice, for how did I know, that "print" did
not (by means of some side-effect) change the value of "image" before I
had made the primitive "print"? The answer to this, of course, is that
"print" has to do what has been stated and should not do what has not
been stated. But then more objections came: I had failed to show that the
representation was unique, perhaps it was such, that "print" was only a
partial function, undefined for some possible values of "image", etc. The
answer to this seems to be the following" legitimate as such concerns are,
they should be dealt with at the right moment, i.e. not before we commit
ourselves to a representation. It is apparently the strength of our approach
that so much of the program could be written down independently of the
representation to be chosen for the values of the type "image". What we
have done so far seems indeed a judicious exploitation of our power of
abstraction (here abstraction of the particular representation to be chosen
for the data structure "image").

But even if we now come to the conclusion that the time has come to
decide upon the data structure for the type "image" we still do not need to
commit ourselves completely. Faced with the question how to structure
our variable now, we can take our decisions step-wise, just as we have done
with the algorithmic refinements encountered so far.

We recall that the origin of the problem was to be found in the circumstance
that the printing primitives "PRSYM" and "NLCR" forced the computation
to produce the picture line after line going from top to bottom. Let us try
to give recognition to that fact by regarding the image as composed of an
array of lines. I then come to the following next level.

LINER

begin integer j;
image: {array line{0 : 49] };

print" {j" = 49; while j >i 0 do {lineprint(line[j]); j minus 1 }};

clear: {j := 49; while j i> 0 do {lineclear(line[j]); j minus 1 }};

mark pos: {linemark(line[y])};

type line;

instr lineprint(line), lineclear(line), linemark(x, line)

end

NOTES ON STRUCTURED PROGRAMMING 57

In the last line but one we have introduced a type called "line"; a type,
I recall, is regarded as a collection of distinguishable values and a variable
of such a type can, at any moment, have one of this collection as its value.
The first line of code expresses that the type "image" is composed of an array
of 50 elements of type "line", numbered from 0 through 49, and, being the
only type composed from this type, again we abstain from introducing a
new identifier (wisely or not).

Then, "print", "clear", and "mark pos", being operations that were
understood as operating on an "image" are translated in algorithms expressed
in terms of operations on a line. In the code of these algorithms, the (true)
actual parameter specifies which line; at the end of the description we give
the instruction list, indicating that the actions operate on "a line"; we have
given the type, but not the parameter.

This level introduces some new features. To start with (as in explaining
"image") we treat the structural refinement of a data type on a footing very
similar to the algorithmic refinements (as applied to "print", "clear" and
"mark pos"). Before this level, our approach could have been regarded as
an effort to establish a discipline for "subroutinisation"--if the reader will
excuse this horrible term!--now we observe that that characterisation of
our effort covers only half of what we are trying to do, as we are trying to
apply a similar technique to data structures as well. Secondly, our previous
machine explained just one entity (instruction or data type) in contrast
to "LINER", which explains a whole bunch of them. The point is that we
try to associate with each level a separate design decision; the decision taken
here is to understand the image from now onwards in terms of lines, and
therefore all operations dealing with an image as such have to be translated
in terms of operations dealing with its lines. The image has been "explained
away", the only unusual type we still have to deal with is the type "line"
and that is what we are going to do now. I draw your attention to the fact
that in the level to come, we have to deal with lines: that lines are used to
compose images from is no longer relevant!

To represent a line we have many different possibilities, e.g. a list of the
the x-coordinates of the positions where a mark should be printed (possibly
sorted in order of increasing x-value), a boolean array, of 100 elements, each
element indicating whether the corresponding positibn on the line of the
picture should be marked, or an integer array of 100 elements, each element
having the value "mark" or "space" of the PRSYM-parameter for the
corresponding printable position. The last representation caters for extension
when different curves (with different marks) have to be printed in the same
picture; therefore we select the last one.
This leads to

58 E. W. DIJKSTRA

LONGREP

begin integer k;

line: {integer array sym[0 : 99]};

lineprint: {k: = 0; while k < 100 do {PRSYM(sym[k]); k plus 1 }; NLCR};

lineclear: {k:= 0; while k < 100do {sym[k] := space; k plus 1 }};

linemark: {sym[x] := mark}

end
This however leads to an implementation filling out the line with spaces

at the righthand side of the rightmost mark" it is like banging the space
bar until the bell rings when we want to effect the transition to a new para-
graph while writing a letter!

The next version suppresses superfluous PRSYM-commands and even
leaves those elements of the variable of type "line" undefined that do not
need to be defined. With each line a counter " f " is associated, giving the
number of PRSYM-commands to be given for that line. Clearing a line
now shrinks into setting " f" to zero!

SHORTREP

begin integer k;
line: {integer f ; integer array sym[0 : 99] };

lineprint: {k: = 0; while k < f d o {PRSYM(sym[k]); k plus 1 } ; NLCR};

lineclear: {f: = 0};

linemark: {sym[xl : = mark;

i f f ~< x do {k: = f ; while k < x do {sym[k] : = space; k plus 1 };

f : = x + 1}}

end
Note added later.

The above program is essentially the program as I have shown it to at
least five different audiences. Now, two months later, while thinking at
leisure about correctness proofs, I suddenly realise that the given algorithm
for "linemark" betrays my past, for it is a piece of lousy coding, compared
with the following alternative:

linemark: {while f ~< x do {sym[f] : = space; f plus ~ 1 };

sym[x] : = mark}

a version which guarantees that whenever " s y m [x] : = mark" is executed,
the relation "x < f " will always be satisfied: it is precisely the function of
the first line to see to this. The reader is invited to try to understand both
versions of linemark and to compare both reasonings. He will then agree
with my judgement that the original version is lousy.

NOTES ON STRUCTURED PROGRAMMING 59

The second version jumped into my mind on account of the following
observation. The conditional clause

"if B do S"

is used in programs in two different ways. On the one hand we have the
applications, in which the execution of the statement S does not invalidate
the truth of B, on the other hand we have the situations in which the execution
of the statement S is guaranteed to invalidate the truth of B. In the latter
case, it is the function of the conditional statement to ensure that after its
execution B will not hold. It is then, essentially, a shortcut for

"while B do S",

which has the property of invalidating the truth of B (provided that it stops),
but the justification of the shortcut requires a separate proof that the repeated
statement will be executed at most once. (In "A first example of step-wise
program composition" we did not bother to introduce this shortcut on
level 264(4) where he wrote

"while "ord too small" do "increase ord by one ;

here a conditional clause would have done the job !)

14. ON WHAT WE HAVE ACHIEVED

One of the metaphors in which I find myself thinking about the program
structure envisaged regards the program as a necklace, strung from individual
pearls.

We have described the program in terms of levels and each level contained
"refinements" of entities that were assumed available in higher levels. These
refinements were either dynamic refinements (algorithms) or static refine-
ments (data structures) to be understood by an appropriate machine. I use
the term "pearl" for such a machine, refinements included.

Our previous program consists of a necklace of six pearls, in order either

COMPFIRST

CLEARFIRST

ISCANNER

COMPPOS

LINER

LONGREP

or

60 E . W . DIJKSTRA

COMPFIRST

CLEARFIRST

ISCANNER

COMPPOS

LINER

SHORTREP.

LONGREP and SHORTREP are two different pearls, they explain the
same concepts (from the "upper face") into the same concept (of the "lower
face"); only the particular refinements differ: they are as alternative programs
for the same job and the same machine.

Changing a program will be treated as replacing one or more pearls of
the original necklace by one or more other pearls. The pearl is the individual
unit from which programs are composed. Making a program (as a member
of a class of related programs) is now regarded as a two-stage process:
making pearls (more than strictly necessary) and then stringing a fitting
necklace out of (a selection of) them.

The reasons for this two-stage approach are many. In designing a program
we have to consider many, many alternative programs and once our program
is finished, we will have to change it (into one of the alternative ones). As
long as programs are regarded as linear strings of basic symbols of a pro-
gramming language and, accordingly, program modification is treated as
text manipulation on that level, then each program modification must be
understood in the universe of all programs (right or wrong!) that can be
written in that programming language. No wonder that program modification
is then a most risky operation! The basic symbol is too small and meaningless
a unit in terms of which to describe this. The pearl, embodying the independent
design decision or, as the case may be, an isolated aspect of the original
problem statement, is meant to be the natural unit for such modifications.

To rephrase the same argument" with the birth of ALGOL 60, syntax was
discovered as a powerful means for expressing structure in a program text.
(Syntax became so glorified that many workers in the field identified
Computing Science with Syntactic Analysis!) It was slightly overlooked,
however, that by expressing structure via syntax, this structure is only given
very indirectly, i.e. to be derived by means of a parsing algorithm to be
applied to a linear sequence of basic symbols. This hurts if we realise that
many a program modification leaves large portions of the structure un-
affected, so that after painful re-parsing of the modified text the same
structure re-emerges! I have a strong feeling that the adequacy of context-
free methods for the representation of structure has been grossly over-

NOTES ON STRUCTURED PROGRAMMING 61

estimated. (In my immediate environment the following program bug in an
ALGOL 60 program was brought to my attention. A program produced
erroneous output with a completely checking implementation which in
addition to the program text requires a final "progend" after the last "end";
this additional character is refused everywhere else so that a correct "begin-
end" bracketing can be established. It turned out that

(1) somewhere in the program a closing string quote was omitted;

(2) somewhere further down in the program text an opening string quote
was omitted;

(3) the "begin - end" structure of the resulting program was syntactically
correct;

(4) the identifiers declared between the two omissions were only used
between the two omissions, so that even context-dependent checks were
unable to give alarm.

Having already my doubts as to the adequacy of context-free methods for
expressing macroscopic structure, I was delighted when this bug was shown
to me !)

The more I think about pearls, the more I feel that something like them
is the only way out of it, if we recognise our responsibility to take (for a
large program) say a thousand (possible) versions into consideration. You
cannot expect the programmer to make all these thousand versions from
scratch, independent of each other. The only way I see to produce such a
potential variety is by a combinatorial technique, i.e. by making more pearls
(say 250) than needed for a single necklace (say 200) and stringing a necklace
from a particular selection. I see no other feasible way. The other mechanism
to achieve great variety by combinatorial means is permutation, but this is
denied to us because the final necklace must be a fitting necklace and, given
the pearls, the order in which they have to be strung on the thread to produce
a fitting necklace is pretty well defined. And also: if it is not, the permissible
change of order is pretty irrelevant!

Also, the pearl gives a clear status to an "incomplete" program, consisting
of the top half of a necklace: it can be regarded as a complete program to be
executed by a suitable machine (of which the bottom half of the necklace
gives a feasible implementation). As such, the correctness of the upper half
of the necklace can be established regardless the choice of the bottom half.
Between two successive pearls we can make a "cut" which is a manual for a
machine, provided by the part of the necklace below the cut and used by
the program represented by the part of the necklace above the cut. This
manual serves as an interface between the two parts of the necklace. We feel

62 Z. W. DIJKSTRA

this form of interface more helpful than regarding data-representation as
an interface between operations, in particular more helpful towards ensuring
the combinatorial freedom required when a program has to be adapted.

Another remark concerns the range of validity of concepts along the
necklace. For instance, the concept "image" is introduced in our top pearl
"COMPFIRST" and is explained away in our bottom pearl but one, viz.
"LINER". If we now come to the conclusion that the program as envisaged
is too demanding on storage space so that we cannot afford to introduce
the variable "image", we are faced with a major program revision and we
have to replace the top five pearls by other ones, because that is the range
of validity of the concept "image"! The bottom pearl (either "LONGREP"
or "SHORTREP") , however, can be retained. (I mention this as an example
of the fact that pearl exchange is by no means restricted to exchange of the
bottom pearl.)

With respect to the validity range of concepts along the necklace I would
like to ask your attention for an observation which thrilled me the first time
I made it. (In retrospect it is pretty obvious and that is exactly why it may
be worth-while to be explicit about it.) With each pearl we associate "an
independent design decision" and the ordering of the pearls along the
necklace therefore implies an ordering of the design decisions. Can we change
this order? Yes, we can, although we then have different pearls. By way of
experiment I have followed the well-known advice: if you are faced with
two primitives~in our case "build" and ~"print"--decide immediately upon
their interface~in our example "image"--so that the two primitives can now
be refined independently of each other. So I did, and I came to the following
form of necklace

COMPFIRST

LINER'

CLEARFIRST'

ISCANNER'

COMPPOS'

SHORTREP

(the four middle pearls being primed to indicate that they refer to different
pearls, although they embody the same decisions as the ones in the original
set). The resulting program is much messier. Why?

Along the necklace we can indicate for each concept its range of validity:
of course they overlap and we can view them as the individual threads from
which the whole explanation is twined, as a kind of "logical rope". The
messy version has a logical rope twined from more and sometimes longer
individual threads" its logical rope is thicker, the whole construction is more

NOTES ON STRUCTURED PROGRAMMING 63

tightly interconnected. The observation thrilled me because it gave a very
convincing demonstration (at least for me!) that elegance, clarity and the
like have indeed marked quantitative aspects (as Mozart knew: many of
his compositions that make one catch one's breath are misleadingly simple,
they seem to be made just out of practically nothing!).

We can phrase the observation in more technical terms. The primed version
is messy because the image is explained away in terms of lines at too early a
stage, thereby forcing us to explain "CLEARFIRST", " ISCANNER" and
"COMPPOS" in terms of lines, while they could still be explained in terms
of the image, i.e. independent of the representation to be chosen for it. Or,
in other words, in the original version we have made a more judicious
exploitation of our power of abstraction than in the primed one. The larger
the number of pearls independent of the particular representation, the more
adaptable one's program and the more easily understandable~because
that set of pearls can be understood at a higher level of abstraction. The
experience seems to indicate that the goals of adaptability and clarity have
been given some substance and (what is more) go by their very nature hand
in hand. This is very encouraging (although not surprising).

It also gives~me at leas t~a somewhat clearer picture of the scope of my
present efforts. Whatever I shall develop, it will not be a General Problem
Solver, not a mechanical one, not even one written for the benefit of the
human problem solver. But it may give the human some appreciation for
the various aspects of "elegance" of a solution when he succeeds in finding
one. And as such it may give him a guide line.

15. ON GROUHN6 AND SEQUENCING

While we are considering a programming tool in which explicit recognition
has been given to the hierarchy of levels of abstraction, the present section
is also applicable to programming in programming languages as they are
understood today, viz. on a constant semantic level. (And there is a fair
chance that the current section has its morals outside the restricted field of
programming, for it seems to be concerned with problem solving in general.)

! shall illustrate my point with two examples, both of which, again, I have
used in viva voce examinations. I owe the first example to Niklaus Wirth.

The problem is to construct a program generating non-empty sequences
of O's, l's and 2's without non-empty, element-wise equal, adjoining sub-
sequences, generating these sequences in alphabetical order until a sequence
of length 100 (i.e. of 100 digits) has been generated. The programmer may
make use of the knowledge that a sequence of length 100 and satisfying the
conditions actually exists. The start of the list of sequences to be generated is:

64 E. W. DIJKSTRA

0
01
010
0102
01020
010201
0102010
0102012

. o

Each solution (apart from the first one) is an extension (by one digit)
of an earlier solution and the algorithm is therefore a straightforward
backtracking one.

We are looking for the "good" sequences, we assume a primitive available
for the investigation of" whether a trial sequence is good. If" it is good, the
trial sequence is printed and extended with a zero to give the next trial
sequence; if" the trial sequence is no good, we perform on it the operation
"increase" to get the next trial sequence, i.e. final digits = 2 are removed
and then the last remaining digit is increased by 1. (The operations "extend
with zero" and "increase" guarantee that trial sequences are generated in
alphabetical order, the solutions, being a selection from them, will then be
printed in alphabetical order as well.) The algorithm will start investigating
the following trial sequences, those marked by an asterisk will be rejected as
"no good""

0
* 00

01
010

* 0100
* 0 1 0 1

0102
01020

* 010200
010201
0102010

* 01020100
* 01020101
* 01020102
* 0102011

0102012

NOTES ON STRUCTURED PROGRAMMING 65

I tbund the majority of my students inclined to make a program with the
following structure:

"set trial sequence to single zero;

repeat if good then

begin print trial sequence; extend trial sequence with zero end

else

increase trial sequence

until length = 101"

Although a program along these lines produces the correct output,
objections can--and to my taste: should--be made against it. The first
objections regards the stopping criterion" when a solution of length 100
has been printed, w e (knowing the algorithm) can deduce that after that for
the first time the trial sequence will have length = 101 and this is now the
criterion to stop, but this is a rather indirect and tortuous way to establish
the stopping criterion. (How tortuous it is was clearly demonstrated by those
students who did not see that an unnecessary trial sequence was generated
and declared for the trial sequence an array of 100 elements instead of 101.)
The second objection is that the operation "increase trial sequence" never
increases its length" after rejection of a trial sequence a superfluous test
on the length is performed. (When I used this example for student examina-
tion examinations 1 had not stressed very explicitly in my lectures any
problem solving principles, so my disappointment was not too severe. In a
sense I am glad to have observed these examinations, for it was for me an
incentive to stress problem solving principles as far as I could find, formulate
and teach them.)

The program to which the above objections do not apply treats the empty
sequence as a virtual solution, not to be printed. It has--to the same level of
detailmthe following structure:

"set trial sequence empty;

repeat extend trial sequence with zero;

while no good do increase trial sequence;

print trial sequence

until length = 100"

Here length is the length of the solution printed (if any), thus avoiding
the tortuous reasoning for the stopping criterion. Also no superfluous last
trial sequence (never to be investigated) will be generated, thanks to the
fact that we have two loops inside each other, superfluous length testing
no longer occurs. Those for whom efficiency is the main criterion will
probably be most convinced by the last observation. I myself, who attach

66 E. W . DIJKSTRA

considerable importance to understandability, am attracted to the latter
program because I can interpret it as a further refinement of the program
structure

"set sequence empty;

repeat transform sequence to next solution;

print sequence

until length = 100"

This (more abstract) program is only concerned with sequences that are
solutions: on this level of description one can ignore that the transition
from one solution to the next takes place via a sequence of trial solutions
that turn out to be failures.

I owe to Joe Weizenbaum the second example. Make a program that, for
given positive integer n, determines the smallest number s that can be
decomposed into the sum of two nth powers in at least two non-trivially
different ways.

(for n = 1 s = 2 = 01 + 21 -" 11 + 1 ~

n = 2 s = 25 = 0 2 + 5 2 = 3 2 -I- 4 2

n = 3 s = 1729= 13 + 123= 93 + 103

n = 4 s = 635318657 = 594 + 1584= 1334 + 1344)

When I first used this example in an oral examination, it took the student
twenty minutes to get somewhat familiar with the problem and he then
sketched a searching algorithm which--when patched up--could indeed
find a number that allowed multiple decompositions into sums of two nth
powers, but he could not prove that when his algorithm produced a value s
that it would be the minimum value. (As a matter of fact he had, up till then,
ignored that part of the problem statement.)

He then regrouped his forces and made a program of the following form:

"integer s, k;

s : = 1;

r e p e a t s : = s + 1;

k : = "the number of ways in which s can be decomposed as the sum
of two nth powers"

until k > 1

thus arriving at a hopelessly inefficient algorithm. The error he made was
the decision at too early a stage to investigate the natural numbers in
succession, the overwhelming majority of which are not decomposable at all.
Reasoning that the value we are looking for is the smallest decomposable
number satisfying an additional property, one comes to an algorithm whose
first sketch could be

NOTES ON STRUCTURED PROGRAMMING 67

"'integer k, s, t;

t: = 1 (and further initialisation);

repeat s: = "smallest decomposable value larger than t";

k: = "the number of ways the above minimum is obtained"

t := s

until k > 1"

By storing a collection of triples (number pairs with their corresponding
s-value), among which each time the pair(s) with minimum s-value exceeding
t will occur and adjusting this collection each time t is increased, a program
emerges that is orders of magnitude more efficient, t jumping from decom-
posable value to the next decomposable value. Programming (or problem
solving in general?) as the judicious postponement of decisions and commit-
ments!

16. DESIGN CONSIDERATIONS IN MORE DETAIL

Preceding sections--in particular "A first example of step-wise program
composition." have evoked the criticism that I have oversimplified the
design process almost to the extent of dishonesty; I don't think t~is criticism
fully unjustified and to remedy the situation I shall treat two examples in
greater detail. The first example is my own invention; I have tried it out
in a few oral examinations and finally I have used it at the end of my course
"An introduction into the Art of Programming" in the classroom. I posed
the problem to an audience of fifty students and together, with me as leader
of the discussion, they solved the problem in 90 minutes.

We consider a character set consisting of letters, a space(sp) and a
point(pnt). Words consist of one or more, but at most twenty letters. An
input text consists of one or more words, separated from each other by one
or more spaces and terminated by zero or more spaces followed by a point.
With the character valued function RNC (Read Next Character) the input
text should be read from and including the first letter of the first words up
to and including the terminating point. An output text has to be produced
using the primitive PNC(x) (i.e. Print Next Character) with a character
valued parameter. If the function of the program were to copy the text, the
following program would do (assuming character valued variables at our
disposal)

char x;

repeat x ' = RNC; PNC(x)until x = pnt

In this example, however, the text is to be subjected to the following
transformation:

68 E. W . DIJKSTRA

(1) in the output text, successive words have to be separated by a single
space

(2) in the output text, the last word has to be followed by a single point

(3) when we number the words 0, 1, 2, 3, . . . in the order from left to
right (i.e. in which they are scanned by repeated evaluation of RNC), the
words with an even ordinal number have to be copied, while the letters of
the words with an odd ordinal number have to be printed in the reverse
order.

For instance (using " - " to represent a space) the input text

" t h i s ~ i s - - a - s i l l y - - p r o g r a m m . "

has to be transformed into

"this-si-a-yllis-program."

My reader is cordially invited to try this program himself, before reading
on and to record his considerations so as to enable himself to compare them
with the sequel. (It should take an experienced programmer much less than
90 minutes !)

The unknown length of the non-empty input text suggested a program of
the structure

prelude;

repeat something until ready;

coda

but immediately this question turned up" "With how much do we deal
during a single execution of "something"?". Four suggestions turned up:

(1) a single character of the input text

(2) a single character of the output text

(3) a word (of both texts)

(4) two successive words (of both texts)

The first two suggestions were rejected very quickly and without much
explicit motivation, al thoughwor because?mit is not too difficult to provide
it. (The first one is unattractive because the amount of output that can be
produced on account of the next character of the input text varies wildly;
for the second suggestion a similar objection holds. Apart from that, a
program with a loop in a loop is in general cleaner: this suggests to look
for larger portions.) The audience rejected the fourth suggestion on account
of the remark that the terminating point could come equally well after an
even number of words as after an odd number of words. To make the
selection of the third suggestion explicit, we wrote on the blackboard:

NOTES ON STRUCTURED PROGRAMMING 69

prelude;

repeat process next word until point read;

coda
Everyone was satisfied in as far as this program expresses neatly that the

output words are dealt with in exactly the same order as the corresponding
input words are read, but it does not express that half of the words are to be
printed in reverse order. When this was pointed out to them, they quickly
introduced a state variable for the purpose. A first suggestion was to count
the number of words processed and to make the processing dependent on
the odd/eveness of this count, but a minor hesitation from my side was
enough for the discovery that a boolean variable would meet the situation.
It was decided that the "prelude" should include

"forward: = true"

while in "process next word" the printing in the order dependent on the
current value of "forward" should be followed by

"forward: = non forward"

For me it was very gratifying to see that they introduced the variable
"forward" before bothering about the details of word separation, which
then became their next worry. It took them more time to realise that a
further refinement of "process next word" required exact specification of
which characters of the input text were going to be read and which characters
of the output text were going to be printed at each execution of the repeatable
statement. In fact, I had to pose the question to them and, after having done
so, I asked them in which of the two texts the grouping presented itself
most naturally. They selected the output text and chose the following
grouping (indicating separation with a vertical bar)"

I this-1 si-I a-I yllis-1 program. I

i.e. in units of a word followed by a proper terminator. I then asked for the
corresponding grouping of the input characters. When their attention had
been brought to the terminators, they suggested (from right to left!) the
following separation of the input characters:

[this i t s - -a [-s ! illy--p I rogram--, l ,

as soon as one of them had remarked that the program could only "know"
that an output word should be followed by a space after having "seen" the
first letter of the next input word. I then remained silent, leaving them
gazing at their grouping of the symbols until one of them discovered that
the exceptional grouping of the characters of the first input word was
inelegant, that the grouping should be

t I h i s ~ i I s - -a I-s I illy--p I rogram--. I ,

i.e. that the first character of the first word should be read in the prelude

70 E. W. DIJKSTRA

Another variable was introduced and we arrived at

boolean forward; char x;

forward: = true; x: = RNC;

repeat process next word;

forward:-- non forward

until x = pnt

in which the second line represents the prelude; in the meantime it had been
decided that the coda could be empty.

The above stage had been reached after the first 45 minutes and we had
our interval for coffee. Personally I felt that the problem had been solved,
that from now onwards it was just a matter of routine; as it turned out, my
audience was not practised enough and it took another 45 minutes to complete
the program.

Unanimously they decided to introduce a

char array c[1:20]

to store the letters of the word. (No one discovered that reading the letters
and printing them in the reverse order could be done by a recursive routine !)
Essentially, four things have to be done: the letters of the word have to be
read, the letters of the word have to be printed, enough has to be read to
decide which terminator is to be printed and the terminator has to be printed.
I did not list these four actions, I did not ask for an explicit decision on how
to group and/or combine them. The audience decided that first all reading
should be done and thereafter all printing. (From their side this was hardly
a conscious decision.)

Trying to refine the reading and the printing process they hit an unsuspected
barrier: they were--at least for me, surprisingly--slow in discovering that
they still had to define an interface between reading and printing through
which to transmit the word to be processed, no matter how obvious this
interface was. It took a long time before anyone formulated that c[i] should
equal the ith character of the word when read from left to right. Perhaps
half of the audience was wondering what all the fuss was about, but it took
an equally long time to discover that the length of the word needed some
form of representation as well. No one suggested to do this by storing a
terminator, they introduced a separate integer "/", counting the number of
letters of the word. They decided that the first word "this" should be
represented by

c[1] = " t" , c[2] = "h", c[3] = "i", c[4] = "s" and l = 4

They still had difficulty in arriving at the reading cycle and it was only
when I had said repeatedly "so we have decided that " l" is going to represent

NOTES ON STRUCTURED PROGRAMMING 71

the number of letter of the word stored in the array" that they arrived for
the beginning of the reading process at

l : = O;

repeat l : = 1 + 1; c [/] : = x; x : = RNC until x = sp or x = pnt

(In the first draft "or x = pnt" was missing, but this was remedied quickly.)
Once this was on the blackboard they completed the reading process without
much hesitation:

while x = sp do x: = R N C

When we turned our attention to the printing process, they were more
productive. Clearly the reading process had shown them the purpose of the
interface and suggestions came from various sides. I had never described
the dilemma to them (see page 24), whether to code an alternative
clause selecting between two repetitions or a repetitive clause repeating an
alternative statement. I was waiting for the dilemma to turn up, it came
and I showed it to them. Then I had a surprise, for one of the students
suggested to map the two loops on each other with the aid of more variables.
We introduced three integers "k. inc, term" and the printing of the letters
became

if forward then begin k : = 0; inc := + 1 ; t e r m : = l end

else b e g i n k : = l + 1 ; i n c : = - 1 ; t e r m : = 1 end;

repeat k : = k + inc; PNC(c[k]) until k = term

followed by

if x = pat then PNC(pnt) else PNC(sp).

Thus we arrived at the following program:

boolean forward; char x; char array c[l :20]; integer l, k, inc, term;

forward: = true; x : = RNC;

repeat l: = 0;

repeat l : = l + 1 ; c[l]:= x ;x := R N C unti lx = sp or x = pnt;

while x = sp do x ' = RNC;

if forward then begin k ' = 0; i n c ' = + 1; t e r m ' = lend

e l s e b e g i n k : = 1 + 1 ; i n c : = - 1 ; t e r m : = 1 end;

repeat k: = k + inc; PNC(c[k]) until k = term;

i f x = pnt then PNC(pnt) else PNC(sp);

fo rward := non forward

until x = pnt

72 E. w. DIJKSTRA

This section has not been included because the problem tackled in it is
very exciting. On the contrary, I feel tempted to remark that the problem
is perhaps too trivial to act as a good testing ground for an orderly approach
to the problem of program composition. This section has been included
because it contains a true eye-witness account of what happened in the
classroom. It should be interpreted as a partial answer to the question that
is often posed to me, viz. to what extent I can teach programming style.
(I never used the "Notes on Structured Programming"--mainly addressed
to myself and perhaps to my colleagues--in teaching. The classroom
experiment described in this section took place at the end of a course
entitled "Introduction into the Art of Programming", for which separate
lecture notes--with exercises and all tha tnwere written. As at the moment
of writing the students that followed this course have still to pass their
examination, it is for me still an open question how successful I have been.
They liked the course, I have heard that they described my programs as
"logical poems", so I have the best of hopes.)

17. THE PROBLEM OF THE EIGHT QUEENS

This last section is adapted from my lecture notes "Introduction into the
Art of Programming". I owe the example--as many other good ones--to
Niklaus Wirth. This last section is added for two reasons.

Firstly, it is a second effort to do more justice to the process of invention.
(As a matter of fact I start where the student is not familiar with the concept
of backtracking and aim at discovering it as I go along.)

Secondly, and that is more important, it deals with recursion as a program-
ming technique. In preceding sections (particularly in "On a program model")
I have reviewed the subroutine concept; there it emerged as an embodiment
of what I have also called "operational abstraction". In the relation between
main program and subroutine we can distinguish quite clearly two different
semantic levels. On the level of the main program the subroutine represents
a primitive action; on that level it is used on account of "what it does for
us" and on that same level it is irrelevant "how it works". On the level of
the subroutine body we are concerned with how it works but c a n n a n d
should--abstract from how it is used. This clear separation of the two
semantic levels "what it does" and "how it works" is denied to the designer
of a recursive procedure. As a result of this circumstance the design of a
recursive routine requires a different haental skill, justifying the inclusion of
the current section in this manuscript. The recursive procedure has to be
understood and conceived on a single semantic level: as such it is more like
a sequencing device, comparable to the repetitive clauses.

NOTES ON STRUCTURED PROGRAMMING 73

It is requested to make a program generating all configurations of eight
queens on a chessboard of 8*8 squares such that no queen can take any of
the others. This means that in the configurations sought, no two queens
may be on the same row, on the same column or on the same diagonal.

We don' t have an operator generating all these configurations, this
operator is precisely what we have to make. Now there is a very general way
(cf. "On grouping and sequencing") of tackling such a problem, which is as
follows.

Call the set of configurations to be generated: set A. Look for a set B of
configurations with the following properties:

(1) set A is a subset of set B

(2) given an element of set B it is not too difficult to decide whether it
belongs to set A as well

(3) we can make an operator generating all elements of set B.

With the aid of the generator (3) for the elements of set B, all elements of
set B can then be generated in turn; they will be subjected to the decision
criterion (2) which decides whether they have to be skipped or handed over,
thus generating elements of set A. Thanks to (1) this algorithm will produce
all elements of set A.

Three remarks are in order.

(1) If the whole approach is to make sense, set B is not identical to set A,
and as it must contain set A as a (true) subset, it must be larger than set A.
For reasons of efficiency, however, it is advisable to choose set B "as small as
possible": the more elements it has, the more elements of it have to be
skipped on account of the decision criterion (2).

(2) We should look for a decision criterion that is cheap to apply, at least
the discovery that an element of B does not belong to A should (on the
average) be cheap. Also this is dictated by efficiency considerations, as we
may expect set B to be an order of magnitude larger than set A, i.e. the
majority of the elements of B will have to be rejected.

(3) The assumption is that the generation of the elements of set B is
easier than a direct generation of the elements of set A. If, nevertheless, the
generation of the elements of set B still presents difficulties, we can repeat
our pattern of thinking, re-apply the trick and look for a still larger set C
of configurations that contains B as a subset etc. (And, as the careful reader
will observe, we shall do so in the course of this example.)

Above, we have sketched a very general approach, applicable to many,
very different problems. Faced with a particular problem, i.e. faced with a
specific set A, the problem of course is what to select for our set B.

74 E. W. DIJKSTRA

In a moment of optimism one could think that this is an easy matter, as we
might consider the following technique. We list all the mutually independent
conditions that our elements of set A must satisfy and omit one of them.
Sometimes this works but as a general technique it is too naive" its short-
comings become apparent when we apply it blindly to the problem of the
eight queens. We can characterise our solutions by the two conditions

(1) there are 8 queens on the board

(2) no two of the queens can take each other.

Omitting either of them gives for set B the alternatives

B l: all configurations with N queens on the board such that no two queens
can take eachother

B2: all configurations of 8 queens on the board.

But both sets are so ludicrously huge that they lead to utterly impractical
algorithms. So we have to be smarter. The burning question is: "How?" .

Well, at this stage of our considerations, being slightly at a loss, we are
not so much concerned with the efficiency of our final program as with the
efficiency of our own thought processes! So, if we decide to make a list of
properties of solutions, in the hope of finding a useful clue, this is a rather
undirected search and therefore we should not invest too much mental
energy in such a search, that is: for a start we should restrict ourselves to
their obvious properties.

(I gave the puzzle as a sobering exercise to one of the staff members of
the Department of Mathematics at my University, because he expressed
the opinion that programming was easy. He violated the above rule and,
being, apart from a pure, perhaps also a poor mathematician, he started
to look for interesting, non-obvious properties. He conjectured that if the
chessboard were divided in four squares of 4*4 fields, each square should
contain two queens, and then he started to prove this conjecture without
having convinced himself that he could make good use of it. He still has
not solved the problem and, as far as I know, has not yet discovered that
his conjecture is false.)

Well, let us go ahead and let us list the obvious properties we can think of.

(a) No row may contain more than one queen, 8 queens are to be placed
and the chessboard has exactly 8 rows. As a result we conclude that
each row will contain precisely one queen.

(b) Similarly we conclude that each column will contain precisely on queen.

(c) There are 15 "upward" diagonals, each of them containing at most one
queen, i.e. 8 upward diagonals contain precisely one queen and 7 upward
diagonals are empty.

NOTES ON STRUCTURED PROGRAMMING 75

(d) Similarly we conclude that 8 dewnward diagonals contain precisely
one queen and 7 are empty.

(e) Given any non-empty configuration of queens such that no two of them
can take each other, removal of any one of these queens will result in a
configuration sharing that property.

Now the last property is very important. (To be quite honest: here I feel
unable to buffer the shock of invention !) In our earlier terminology it tells
us something about any non-empty configuration from set B1. If we start
with a solution (which is an 8-queen configuration from set B1) and take
away one queen we get a 7-queen configuration from set B1; taking away a
next queen will leave again a configuration from set B1 and we can repeat
this process until the chessboard is empty. We could have taken a motion
picture of this process: playing it back backwards it would show how,
starting from an empty board, via configurations from set B1 that solution
can be built up by adding one queen at a time. (Whether the trick of the
motion picture played backwards is of any assistance for my readers is not
for me to judge; I only mention it because I know that such devices help me.)
When making the picture, any solution could be reduced to the e~pty board
in many ways, in exactly the same number of waysmwhile playifig it back-
wardsmeach solution can be built up. Can we exploit this freedom? We have
rejected set B1 because it is too large, but maybe we can find a suitable
subset of it, such that each non-empty configuration of the subset is a
one-queen extension of only one other configuration of the subset. The
"extension property" suggests that we are willing to consider configurations
with less than 8 queens on the board and that we would like to form new
configurations by adding a queen to an existing configuration--a relatively
simple operation presumably. Well, this draws our attention immediately
to the generation of the elements of the (still mysterious) set B. For instance,
in what order? And this again raises a question to which, as yet, we have not
paid the slightest attention: in what order are we to generate the solutions,
i.e. the elements of set A ? Can we make a reasonable suggestion in the hope
of deriving a clue from it? (In my experience such a question about order is
usually very illuminating. It is not only that we have to make a sequential
program that by definition will generate the solutions in some order, so that
the decision about the order will have to be taken at some stage of the game.
The decision about the order usually provides the clue to the proof that the
program will generate all solutions and each solution only once.)

Prior to that we should ask ourselves: how do we characterise solutions
once we have them? To characterise a solution we must give the positions
of 8 queens. The queens themselves are unordered, but the rows and the
columns are not: we may assume them to be numbered from 0 through 7.

76 E. W. DIJKSTRA

Thanks to property (a) which tells us that each row contains precisely one
queen, we can order the queens according to the number of the row they
occupy. Then each configuration of 8 queens can be given by the value of the
integer array x [0:7], where

x[i] = the number of the column occupied by the queen in the ith row.

Each solution is then a "8-digit word" (x [0] . . . x [7]) and the only sensible
order in which to generate these words that I can think of is the alphabetical
order.

Note. As a consequence we open the way to algorithms in which rows and
columns are treated differently, while the original problem was symmetrical
in rows and columns! To consider asymmetric algorithms is precisely what
the above considerations have taught us!

Returning to the alphabetical order: now we are approaching familiar
ground. If the elements of set A are to be generated in alphabetical order
and they have to be generated by selection from a larger set B, then the
standard technique is to generate the elements of set B in alphabetical order
as well and to produce the elements of the subset in the order in which they
occur in set B.

First we have to generate all solutions with x[0] = 0 (if any), then those
with x[0] = 1 (if any) etc.; of the solutions with x[0] fixed, those with
x[1] = 0 (if any) have to be generated first, followed by those with x[1] = 1
(if any) etc. In other words: the queen of row 0 is placed in column 0--say
the square in the bottom left corner--and remains there until all elements
of A (and B) with queen 0 in that position have been generated and only
then is she moved one square to the right to the next column. For each
position of queen 0, queen 1 will walk from left to right in row 1--skipping
the squares that are covered by queen 0--for each combined position of the
first two queens, queen 2 walks along row 2 from left to right, skipping all
squares covered by the preceding queens, etc.

But now we have found set B! It is indeed a subset of B1, set B consists of
all configurations with one queen in each of the first N rows, such that no
two queens can take each other.

The criterion deciding whether an element of B belongs to A as well is
that N = 8.

Having established our choice for set B, we find ourselves faced with the
task of generating its elements in alphabetical order. We could try to do this
via an operator "GENERATE NEXT ELEMENT OF B" with a program
of the form

NOTES ON STRUCTURED PROGRAMMING 77

INITIALISE EMPTY BOARD;

repeat GENERATE NEXT ELEMENT OF B;

if N = 8 then PRINT C O N F I G U R A T I O N

unt i l B EXHAUSTED

(Here we have used the fact that the empty board belongs to B, but not to A,
and is not B's only element. We have made no assumptions about the
existence of solutions.)

But for two reasons a program of the above structure is less attractive.
Firstly, we don't have a ready-made criterion to recognise the last element
of B when we meet it and in all probability we have to generalise the operator
" G E N E R A T E NEXT ELEMENT OF B" in such a way that it will produce
the indication "B EXHAUSTED" when it is applied to the last " true"
element of B. Secondly, it is not too obvious how to make the operator
" G E N E R A T E NEXT ELEMENT OF B": the number of queens on the
board may remain constant, it may decrease and it may increase.

So that is not too attractive. What can we do about it? As long as we
regard the sequence of configurations of set B as a single, monotonous
sequence, not subdivided into a succession of subsequences, the corresponding
program structure will be a single loop as in the program just sketched.
If we are looking for an alternative program structure, we must therefore
ask ourselves "How can we group the sequence of configurations from set B
into a succession of subsequences?".

Realising that the sequence of configurations from set B have to be
generated in alphabetical order and thinking about the main subdivision in
a dictionary~viz, by first letter--the first grouping is obvious: by position
of queen 0.

Generating all elements of set B ~ f o r the moment we forget about the
printing of those configurations that belong to set A as well--then presents
itself as

INITIALISE EMPTY BOARD;

h ' = 0 ;

repeat SET QUEEN ON SQUARE[0,h];

GENERATE ALL CONFIGURATIONS WITH QUEEN 0

FIXED;

REMOVE QUEEN FROM SQUARE[0,h];

h : = h + 1

unt i l h = 8 .

i

78 E. W. DIJKSTRA

But now the question repeats itself: how do we group all configurations
with queen 0 fixed ? We have already given the answer" in order of increasing
column number of queen I, i.e.

h l : = 0;

repeat if SQUAREE1, hl] FREE d o

begin SET QUEEN ON SQUAREEI,hl];

GENERATE ALL CONFIGURATIONS WITH FIRST

2 QUEENS FIXED;

REMOVE QUEEN FROM SQUARE[1,hl]

end;

h i : = hl + 1

u n t i l h l = 8 .

For "GENERATE ALL CONFIGURATIONS WITH FIRST2 QUEENS
FIXED" we co tJld write a similar piece of program and so on; inserting
them inside each other would result in a correct program with eight nested
loops, but they would all be very, very similar. To do so has two disadvan-
tages

(1) it takes a cumbersome amount of writing

(2) it gives a program solving the problem for a chessboard of 8*8 squares,
but to solve the same puzzle for a board of, say, 10"10 squares would require
a new, still longer program.

We are looking for a way in which all the loops can be executed under
control of the same program text. Can we make the text of the loops
identical? Can we exploit their identity?

Well, to start with, we observe that the outermost and the innermost loops
are exceptional.

The outermost loop is exceptional in the sense that it does not test whether
squareE0,h] is free because we know it is free. But because we know it is
free, there is no harm in inserting the conditional clause

if SQUAREE0,h] FREE do

and this gives the outermost loop the same pattern as the next six loops.
The innermost loop is exceptional in the sense that as soon as 8 queens

have been placed on the board, there is no point in generating all configura-
tions with those queens fixed, because we have a full board. Instead the
configuration should be printed, because we have found an element of set B
that is also an element of set A. We can map the innermost cycle and the
embracing seven upon each other by replacing the line "GENERATE" by

NOTES ON STRUCTURED PROGRAMMING 79

if BOARD FULL then PRINT C O N F I G U R A T I O N

else GENERATE ALL CONFIGURATIONS EXTENDING THE

C U R R E N T ONE

For this purpose we introduce a global variable, "n" say, counting the
number of queens currently on the board. The test "BOARD FULL"
becomes "n = 8" and the operations on squares can then have "n" as first
subscript.

By now the only difference between the eight cycles is that each has "its
private h". By the time that we have reached this stage, we can give an
affirmative answer to the question whether we can exploit the identity of
the loops. The sequencing through the eight nested loops can be evoked
with the aid of a recursive procedure, "generate" say, which describes the
cycle once. Using it, the program itself collapses into

INITIALISE EMPTY BOARD; n: = 0;

generate

while "generate" is recursively defined as follows:

procedure generate;

begin integer h;

h : = O ;

repeat if SQUARE[n,h] FREE do

begin SET QUEEN ON SQUARE[n,h]; n : = n + l;

if n = 8 then PRINT C O N F I G U R A T I O N

else generate;

n : = n - l ; REMOVE QUEEN FROM SQUARE[n,h]
end;

h : = h + 1

until h = 8

end

Each activation of "generate" will introduce its private local variable h,
thus catering for h, hi, . . . , h8 that we would need when writing eight
nested loops.

Our program--although correct to this level of detail--is not yet complete,
i.e. it has not been refined up to the standard degree of detail that is required
by our programming language. In our next refinement we should decide
upon the conventions according to which we represent the configurations
on the board. We have already decided more or less that we shall use the

integer array x[0:73

80 E . W . DIJKSTRA

giving in order the column numbers occupied by the queens, and also that

integer n

should be used to represent the number of queens on the board. More
precisely

n = the number of queens on the board

x[i] for 0 ~< i < n = the number of the column occupied by the queen in
the ith row.

The array x and the scalar n are together sufficient to fix any configuration
of the set B and those will be the only ones on the chessboard. As a result
we have no logical need for more variables; yet we shall introduce a few
more, because from a practical point of view we can make good use of them.
The problem is that with only the above material the (frequent) analysis
whether a given square in the next free row is uncovered is rather painful
and time-consuming. It is here that we look for the standard technique as
described in the section "On trading storage space for computation speed"
(see page 42). The role of the stored argument is here played by the
configuration of queens on the board, but this value does not change wildly--
oh no, the only thing we do is to add or remove a queen. And we are
looking for additional tables (whose contents are a function of the current
configuration) such that they will assist us in deciding whether a square is
free, and also such that they can be updated easily when a queen is added
to or removed from a configuration.

How? Well, we might think of a boolean array of 8*8, indicating for each
square whether it is free or not. If we do this for the full board, adding a
queen might imply dealing with 28 squares. Removing a queen, however, is
then a painful process, because it does not follow that all squares no longer
covered by her are indeed free: they might be covered by one or more of
the other queens that remain in the configuration. There is a remedy (again
standard) for this, viz. associating with each square not a boolean variable,
but an integer counter, counting the number of queens covering the square.
Adding a queen then means increasing up to 28 counters by 1, removing a
queen means decreasing them by 1 and a square is free when its associated
counter equals zero. We could do it that way, but the question is whether
this is not overdoing it: 28 adjustments is indeed quite a heavy overhead on
setting or removing a queen.

Each square in the freedom of which we are interested covers a row (which
is free by definition, so we need not bother about that), covers one of the
8 columns (which must still be empty), covers one of the 15 upward diagonals
(which must still be empty) and one of the 15 downward diagonals (which
must still be empty). This suggests that we should keep track of

NOTES ON STRUCTURED PROGRAMMING 81

(1) the columns that are free

(2) the upward diagonals that are free

(3) the downward diagonals that are free.

As each column or diagonal is covered only once we do not need a counter
for each, a boolean variable is sufficient. The columns are readily identified
by their column number and for the columns we introduce

boolean array co1[0:7]

where "col[i]" means that the ith column is still free.
How do we identify the diagonals? Well, along an upward diagonal the

difference between row number and column number is constant; along a
downward diagonal their sum is constant. As a result, difference and sum
respectively are the easiest index by which to distinguish the diagonals and
we introduce therefore

boolean array u p [- 7: + 7], down[0:l 4]

to keep track of which diagonals are flee.

The question whether square[n,h] is free becomes

col[hi and u p [n - h] and down[n + h] ,

setting and removing a queen both imply the adjustment of three booleans,
one in each array.

In the final program the variable "k" is introduced for general counting
purposes, statements and expressions are labeled (in capital letters). Note
that we have merged two levels of description: what were statements and
functions on the upper level, now appear as explanatory labels.

With the final program we come to the end of the last section. We have
attempted to show the pattern of reasoning by which one could discover
backtracking as a technique, and also the pattern of reasoning by which
one could discover a recursive procedure describing it. The most important
moral of this section is perhaps that all that analysis and synthesis could be
carried out before we had decided how (and how redundantly) a configuration
would be represented inside the machine. It is true that such considerations
only bear fruit when eventually a convenient representation for configura-
tions can be found. Yet the mental isolation of a level of abstraction in which
we allow ourselves not to bother about it seems crucial.

Finally, I would like to thank the reader that has followed me up till here
for his patience.

8 2 E. W . D I J K S T R A

. . . .3 .
!

II

F

r---, 11 ~ II

o 0

0 ~ ~
0 ~ ~

o b ~ _ < . . + ~ ~ ~ ~

~ 0a

0
" ~ ~ II

~ ~ , +

o II , , . ~ , ~ ~ ~ ~'-~
I:II "-~" ~,J9 r-n Z

~ 0 o

~ ~ ~ ~ "~ ,.~ II
• ~ ~

~ - ~

~ ~ I1 ~

d4

I1

M
, m

+

II
. .

m

III ° °

I - - " ' 1

I . . - - d

~'~ 0
II , n

< 1~ .11.

b--

l_.a l__/

- - I1 II II

